{"title":"溶酶体蛋白动力学研究的最新进展:临床应用的可能性。","authors":"Dhriti Arora, Yannic Hackenberg, Jiaran Li, Dominic Winter","doi":"10.1080/14789450.2023.2190515","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The lysosome is the main degradative organelle of almost all mammalian cells, fulfilling important functions in macromolecule recycling, metabolism, and signaling. Lysosomal dysfunction is connected to a continuously growing number of pathologic conditions, and lysosomal proteins present potential biomarkers for a variety of diseases. Therefore, there is an increasing interest in their analysis in patient samples.</p><p><strong>Areas covered: </strong>We provide an overview of OMICs studies which identified lysosomal proteins as potential biomarkers for pathological conditions, covering proteomics, genomics, and transcriptomics approaches, identified through PubMed searches. With respect to discovery proteomics analyses, mainly lysosomal luminal and associated proteins were detected, while membrane proteins were found less frequently. Comprehensive coverage of the lysosomal proteome was only achieved by ultra-deep-coverage studies, but targeted approaches allowed for the reproducible quantification of lysosomal proteins in diverse sample types.</p><p><strong>Expert opinion: </strong>The low abundance of lysosomal proteins complicates their reproducible analysis in patient samples. Whole proteome shotgun analyses fail in many instances to cover the lysosomal proteome, which is due to under-sampling and/or a lack of sensitivity. With the current state of the art, targeted proteomics assays provide the best performance for the characterization of lysosomal proteins in patient samples.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Updates on the study of lysosomal protein dynamics: possibilities for the clinic.\",\"authors\":\"Dhriti Arora, Yannic Hackenberg, Jiaran Li, Dominic Winter\",\"doi\":\"10.1080/14789450.2023.2190515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The lysosome is the main degradative organelle of almost all mammalian cells, fulfilling important functions in macromolecule recycling, metabolism, and signaling. Lysosomal dysfunction is connected to a continuously growing number of pathologic conditions, and lysosomal proteins present potential biomarkers for a variety of diseases. Therefore, there is an increasing interest in their analysis in patient samples.</p><p><strong>Areas covered: </strong>We provide an overview of OMICs studies which identified lysosomal proteins as potential biomarkers for pathological conditions, covering proteomics, genomics, and transcriptomics approaches, identified through PubMed searches. With respect to discovery proteomics analyses, mainly lysosomal luminal and associated proteins were detected, while membrane proteins were found less frequently. Comprehensive coverage of the lysosomal proteome was only achieved by ultra-deep-coverage studies, but targeted approaches allowed for the reproducible quantification of lysosomal proteins in diverse sample types.</p><p><strong>Expert opinion: </strong>The low abundance of lysosomal proteins complicates their reproducible analysis in patient samples. Whole proteome shotgun analyses fail in many instances to cover the lysosomal proteome, which is due to under-sampling and/or a lack of sensitivity. With the current state of the art, targeted proteomics assays provide the best performance for the characterization of lysosomal proteins in patient samples.</p>\",\"PeriodicalId\":50463,\"journal\":{\"name\":\"Expert Review of Proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/14789450.2023.2190515\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2023.2190515","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Updates on the study of lysosomal protein dynamics: possibilities for the clinic.
Introduction: The lysosome is the main degradative organelle of almost all mammalian cells, fulfilling important functions in macromolecule recycling, metabolism, and signaling. Lysosomal dysfunction is connected to a continuously growing number of pathologic conditions, and lysosomal proteins present potential biomarkers for a variety of diseases. Therefore, there is an increasing interest in their analysis in patient samples.
Areas covered: We provide an overview of OMICs studies which identified lysosomal proteins as potential biomarkers for pathological conditions, covering proteomics, genomics, and transcriptomics approaches, identified through PubMed searches. With respect to discovery proteomics analyses, mainly lysosomal luminal and associated proteins were detected, while membrane proteins were found less frequently. Comprehensive coverage of the lysosomal proteome was only achieved by ultra-deep-coverage studies, but targeted approaches allowed for the reproducible quantification of lysosomal proteins in diverse sample types.
Expert opinion: The low abundance of lysosomal proteins complicates their reproducible analysis in patient samples. Whole proteome shotgun analyses fail in many instances to cover the lysosomal proteome, which is due to under-sampling and/or a lack of sensitivity. With the current state of the art, targeted proteomics assays provide the best performance for the characterization of lysosomal proteins in patient samples.
期刊介绍:
Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease.
The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery.
The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections:
Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale
Article highlights - an executive summary cutting to the author''s most critical points.