利用学科间信息传递增强扩散MRI数据的角分辨率。

Geng Chen, Pei Zhang, Ke Li, Chong-Yaw Wee, Yafeng Wu, Dinggang Shen, Pew-Thian Yap
{"title":"利用学科间信息传递增强扩散MRI数据的角分辨率。","authors":"Geng Chen,&nbsp;Pei Zhang,&nbsp;Ke Li,&nbsp;Chong-Yaw Wee,&nbsp;Yafeng Wu,&nbsp;Dinggang Shen,&nbsp;Pew-Thian Yap","doi":"10.1007/978-3-319-28588-7_13","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion magnetic resonance imaging is widely used to investigate diffusion patterns of water molecules in the human brain. It provides information that is useful for tracing axonal bundles and inferring brain connectivity. Diffusion axonal tracing, namely tractography, relies on local directional information provided by the orientation distribution functions (ODFs) estimated at each voxel. To accurately estimate ODFs, data of good signal-to-noise ratio and sufficient angular samples are desired, but unfortunately, are not always practically available. In this paper, we propose to improve ODF estimation by using inter-subject correlation. Specifically, diffusion-weighted images acquired from different subjects, when transformed to the space of a target subject, can not only provide signal denoising with additional information, but also drastically increase the number of angular samples for better ODF estimation. This is largely because of the incoherence of the angular samples generated when the diffusion signals are reoriented and warped to the target space. Experiments on both synthetic data and real data show that our method can reduce noise-induced artifacts, such as spurious ODF peaks, and yield more coherent orientations.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"2016 ","pages":"145-157"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-28588-7_13","citationCount":"2","resultStr":"{\"title\":\"Angular Resolution Enhancement of Diffusion MRI Data Using Inter-Subject Information Transfer.\",\"authors\":\"Geng Chen,&nbsp;Pei Zhang,&nbsp;Ke Li,&nbsp;Chong-Yaw Wee,&nbsp;Yafeng Wu,&nbsp;Dinggang Shen,&nbsp;Pew-Thian Yap\",\"doi\":\"10.1007/978-3-319-28588-7_13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffusion magnetic resonance imaging is widely used to investigate diffusion patterns of water molecules in the human brain. It provides information that is useful for tracing axonal bundles and inferring brain connectivity. Diffusion axonal tracing, namely tractography, relies on local directional information provided by the orientation distribution functions (ODFs) estimated at each voxel. To accurately estimate ODFs, data of good signal-to-noise ratio and sufficient angular samples are desired, but unfortunately, are not always practically available. In this paper, we propose to improve ODF estimation by using inter-subject correlation. Specifically, diffusion-weighted images acquired from different subjects, when transformed to the space of a target subject, can not only provide signal denoising with additional information, but also drastically increase the number of angular samples for better ODF estimation. This is largely because of the incoherence of the angular samples generated when the diffusion signals are reoriented and warped to the target space. Experiments on both synthetic data and real data show that our method can reduce noise-induced artifacts, such as spurious ODF peaks, and yield more coherent orientations.</p>\",\"PeriodicalId\":72661,\"journal\":{\"name\":\"Computational diffusion MRI : MICCAI Workshop\",\"volume\":\"2016 \",\"pages\":\"145-157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-28588-7_13\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational diffusion MRI : MICCAI Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-28588-7_13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational diffusion MRI : MICCAI Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-28588-7_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

扩散磁共振成像被广泛用于研究水分子在人脑中的扩散模式。它为追踪轴突束和推断大脑连接提供了有用的信息。扩散轴突跟踪,即轨迹成像,依赖于在每个体素上估计的方向分布函数(odf)提供的局部方向信息。为了准确地估计odf,需要良好的信噪比和足够的角度样本数据,但不幸的是,这些数据并不总是实际可用的。在本文中,我们提出利用学科间相关性来改进ODF估计。具体来说,将从不同主体获取的扩散加权图像变换到目标主体的空间中,不仅可以提供带有附加信息的信号去噪,还可以大幅增加角度样本的数量,从而获得更好的ODF估计。这主要是由于扩散信号被重新定向和扭曲到目标空间时产生的角度样本的不相干性。在合成数据和真实数据上的实验表明,我们的方法可以减少噪声引起的伪影,如伪ODF峰,并产生更一致的取向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Angular Resolution Enhancement of Diffusion MRI Data Using Inter-Subject Information Transfer.

Angular Resolution Enhancement of Diffusion MRI Data Using Inter-Subject Information Transfer.

Angular Resolution Enhancement of Diffusion MRI Data Using Inter-Subject Information Transfer.

Diffusion magnetic resonance imaging is widely used to investigate diffusion patterns of water molecules in the human brain. It provides information that is useful for tracing axonal bundles and inferring brain connectivity. Diffusion axonal tracing, namely tractography, relies on local directional information provided by the orientation distribution functions (ODFs) estimated at each voxel. To accurately estimate ODFs, data of good signal-to-noise ratio and sufficient angular samples are desired, but unfortunately, are not always practically available. In this paper, we propose to improve ODF estimation by using inter-subject correlation. Specifically, diffusion-weighted images acquired from different subjects, when transformed to the space of a target subject, can not only provide signal denoising with additional information, but also drastically increase the number of angular samples for better ODF estimation. This is largely because of the incoherence of the angular samples generated when the diffusion signals are reoriented and warped to the target space. Experiments on both synthetic data and real data show that our method can reduce noise-induced artifacts, such as spurious ODF peaks, and yield more coherent orientations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信