设计以生存为最终终点的连续、多次分配、随机试验 (SMART) 的统计考虑因素和软件。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Sasha Kravets, Amy S Ruppert, Sawyer B Jacobson, Jennifer G Le-Rademacher, Sumithra J Mandrekar
{"title":"设计以生存为最终终点的连续、多次分配、随机试验 (SMART) 的统计考虑因素和软件。","authors":"Sasha Kravets, Amy S Ruppert, Sawyer B Jacobson, Jennifer G Le-Rademacher, Sumithra J Mandrekar","doi":"10.1080/10543406.2023.2233616","DOIUrl":null,"url":null,"abstract":"<p><p>Sequential, multiple assignment, randomized trial (SMART) designs are appropriate for comparing adaptive treatment interventions, in which intermediate outcomes (called tailoring variables) guide subsequent treatment decisions for individual patients. Within a SMART design, patients may be re-randomized to subsequent treatments following the outcomes of their intermediate assessments. In this paper, we provide an overview of statistical considerations necessary to design and implement a two-stage SMART design with a binary tailoring variable and a survival final endpoint. A chronic lymphocytic leukemia trial with a final endpoint of progression-free survival is used as an example for the simulations to assess how design parameters, including, choice of randomization ratios for each stage of randomization, and response rates of the tailoring variable affect the statistical power. We assess the choice of weights from restricted re-randomization on data analyses and appropriate hazard rate assumptions. Specifically, for a given first-stage therapy and prior to the tailoring variable assessment, we assume equal hazard rates for all patients randomized to a treatment arm. After the tailoring variable assessment, individual hazard rates are assumed for each intervention path. Simulation studies demonstrate that the response rate of the binary tailoring variable impacts power as it directly impacts the distribution of patients. We also confirm that when the first stage randomization is 1:1, it is not necessary to consider the first stage randomization ratio when applying the weights. We provide an R-shiny application for obtaining power for a given sample size for SMART designs.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"539-552"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Considerations and Software for Designing Sequential, Multiple Assignment, Randomized Trials (SMART) with a Survival Final Endpoint.\",\"authors\":\"Sasha Kravets, Amy S Ruppert, Sawyer B Jacobson, Jennifer G Le-Rademacher, Sumithra J Mandrekar\",\"doi\":\"10.1080/10543406.2023.2233616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sequential, multiple assignment, randomized trial (SMART) designs are appropriate for comparing adaptive treatment interventions, in which intermediate outcomes (called tailoring variables) guide subsequent treatment decisions for individual patients. Within a SMART design, patients may be re-randomized to subsequent treatments following the outcomes of their intermediate assessments. In this paper, we provide an overview of statistical considerations necessary to design and implement a two-stage SMART design with a binary tailoring variable and a survival final endpoint. A chronic lymphocytic leukemia trial with a final endpoint of progression-free survival is used as an example for the simulations to assess how design parameters, including, choice of randomization ratios for each stage of randomization, and response rates of the tailoring variable affect the statistical power. We assess the choice of weights from restricted re-randomization on data analyses and appropriate hazard rate assumptions. Specifically, for a given first-stage therapy and prior to the tailoring variable assessment, we assume equal hazard rates for all patients randomized to a treatment arm. After the tailoring variable assessment, individual hazard rates are assumed for each intervention path. Simulation studies demonstrate that the response rate of the binary tailoring variable impacts power as it directly impacts the distribution of patients. We also confirm that when the first stage randomization is 1:1, it is not necessary to consider the first stage randomization ratio when applying the weights. We provide an R-shiny application for obtaining power for a given sample size for SMART designs.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"539-552\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2023.2233616\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2233616","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

顺序、多重分配、随机试验(SMART)设计适用于比较适应性治疗干预措施,在这种干预措施中,中间结果(称为量身定制变量)可指导个体患者的后续治疗决策。在 SMART 设计中,患者可根据中期评估结果重新随机接受后续治疗。在本文中,我们将概述设计和实施具有二元裁剪变量和生存最终终点的两阶段 SMART 设计所需的统计考虑因素。我们以一项最终终点为无进展生存期的慢性淋巴细胞白血病试验为例进行了模拟,以评估设计参数(包括每个随机化阶段的随机化比率选择和裁剪变量的响应率)如何影响统计能力。我们根据数据分析和适当的危险率假设来评估限制性再随机化权重的选择。具体来说,对于给定的第一阶段疗法,在进行裁剪变量评估之前,我们假设所有被随机分配到治疗组的患者的危险率相同。在量身定制变量评估之后,我们假设每个干预路径都有各自的危险率。模拟研究表明,二元裁剪变量的响应率会影响疗效,因为它直接影响患者的分布。我们还证实,当第一阶段随机化为 1:1 时,在应用权重时无需考虑第一阶段随机化比率。我们提供了一个 R-shiny 应用程序,用于获取 SMART 设计中给定样本量的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Considerations and Software for Designing Sequential, Multiple Assignment, Randomized Trials (SMART) with a Survival Final Endpoint.

Sequential, multiple assignment, randomized trial (SMART) designs are appropriate for comparing adaptive treatment interventions, in which intermediate outcomes (called tailoring variables) guide subsequent treatment decisions for individual patients. Within a SMART design, patients may be re-randomized to subsequent treatments following the outcomes of their intermediate assessments. In this paper, we provide an overview of statistical considerations necessary to design and implement a two-stage SMART design with a binary tailoring variable and a survival final endpoint. A chronic lymphocytic leukemia trial with a final endpoint of progression-free survival is used as an example for the simulations to assess how design parameters, including, choice of randomization ratios for each stage of randomization, and response rates of the tailoring variable affect the statistical power. We assess the choice of weights from restricted re-randomization on data analyses and appropriate hazard rate assumptions. Specifically, for a given first-stage therapy and prior to the tailoring variable assessment, we assume equal hazard rates for all patients randomized to a treatment arm. After the tailoring variable assessment, individual hazard rates are assumed for each intervention path. Simulation studies demonstrate that the response rate of the binary tailoring variable impacts power as it directly impacts the distribution of patients. We also confirm that when the first stage randomization is 1:1, it is not necessary to consider the first stage randomization ratio when applying the weights. We provide an R-shiny application for obtaining power for a given sample size for SMART designs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信