L. B. Kuiper, J. B. Roberts, P. M. Estave, D. Leo, R. R. Gainetdinov, S. R. Jones
{"title":"部分多巴胺转运体缺乏症雄性大鼠的乙醇摄入模式","authors":"L. B. Kuiper, J. B. Roberts, P. M. Estave, D. Leo, R. R. Gainetdinov, S. R. Jones","doi":"10.1111/gbb.12847","DOIUrl":null,"url":null,"abstract":"<p>Mesolimbic dopamine signaling plays a major role in alcohol and substance use disorders as well as comorbidities such as anxiety and depression. Growing evidence suggests that alcohol drinking is modulated by the function of the dopamine transporter (DAT), which tightly regulates extracellular dopamine concentrations. Adult male rats on a Wistar Han background (DAT+/+) and rats with a partial DAT deletion (DAT+/−) were used in this study. First, using fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens core from ethanol-naïve subjects, we measured greater evoked dopamine concentrations and slower dopamine reuptake in DAT+/− rats, consistent with increased dopamine signaling. Next, we measured ethanol drinking using the intermittent access two-bottle choice paradigm (20% v/v ethanol vs. water) across 5 weeks. DAT+/− rats voluntarily consumed less ethanol during its initial availability (the first 30 min), especially after longer periods of deprivation. In addition, DAT+/− males consumed less ethanol that was adulterated with the bitter tastant quinine. These findings suggest that partial DAT blockade and concomitant increase in brain dopamine levels has potential to reduce drinking and ameliorate alcohol use disorder (AUD).</p>","PeriodicalId":50426,"journal":{"name":"Genes Brain and Behavior","volume":"22 6","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbb.12847","citationCount":"0","resultStr":"{\"title\":\"Patterns of ethanol intake in male rats with partial dopamine transporter deficiency\",\"authors\":\"L. B. Kuiper, J. B. Roberts, P. M. Estave, D. Leo, R. R. Gainetdinov, S. R. Jones\",\"doi\":\"10.1111/gbb.12847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mesolimbic dopamine signaling plays a major role in alcohol and substance use disorders as well as comorbidities such as anxiety and depression. Growing evidence suggests that alcohol drinking is modulated by the function of the dopamine transporter (DAT), which tightly regulates extracellular dopamine concentrations. Adult male rats on a Wistar Han background (DAT+/+) and rats with a partial DAT deletion (DAT+/−) were used in this study. First, using fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens core from ethanol-naïve subjects, we measured greater evoked dopamine concentrations and slower dopamine reuptake in DAT+/− rats, consistent with increased dopamine signaling. Next, we measured ethanol drinking using the intermittent access two-bottle choice paradigm (20% v/v ethanol vs. water) across 5 weeks. DAT+/− rats voluntarily consumed less ethanol during its initial availability (the first 30 min), especially after longer periods of deprivation. In addition, DAT+/− males consumed less ethanol that was adulterated with the bitter tastant quinine. These findings suggest that partial DAT blockade and concomitant increase in brain dopamine levels has potential to reduce drinking and ameliorate alcohol use disorder (AUD).</p>\",\"PeriodicalId\":50426,\"journal\":{\"name\":\"Genes Brain and Behavior\",\"volume\":\"22 6\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbb.12847\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes Brain and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12847\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12847","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Patterns of ethanol intake in male rats with partial dopamine transporter deficiency
Mesolimbic dopamine signaling plays a major role in alcohol and substance use disorders as well as comorbidities such as anxiety and depression. Growing evidence suggests that alcohol drinking is modulated by the function of the dopamine transporter (DAT), which tightly regulates extracellular dopamine concentrations. Adult male rats on a Wistar Han background (DAT+/+) and rats with a partial DAT deletion (DAT+/−) were used in this study. First, using fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens core from ethanol-naïve subjects, we measured greater evoked dopamine concentrations and slower dopamine reuptake in DAT+/− rats, consistent with increased dopamine signaling. Next, we measured ethanol drinking using the intermittent access two-bottle choice paradigm (20% v/v ethanol vs. water) across 5 weeks. DAT+/− rats voluntarily consumed less ethanol during its initial availability (the first 30 min), especially after longer periods of deprivation. In addition, DAT+/− males consumed less ethanol that was adulterated with the bitter tastant quinine. These findings suggest that partial DAT blockade and concomitant increase in brain dopamine levels has potential to reduce drinking and ameliorate alcohol use disorder (AUD).
期刊介绍:
Genes, Brain and Behavior was launched in 2002 with the aim of publishing top quality research in behavioral and neural genetics in their broadest sense. The emphasis is on the analysis of the behavioral and neural phenotypes under consideration, the unifying theme being the genetic approach as a tool to increase our understanding of these phenotypes.
Genes Brain and Behavior is pleased to offer the following features:
8 issues per year
online submissions with first editorial decisions within 3-4 weeks and fast publication at Wiley-Blackwells
High visibility through its coverage by PubMed/Medline, Current Contents and other major abstracting and indexing services
Inclusion in the Wiley-Blackwell consortial license, extending readership to thousands of international libraries and institutions
A large and varied editorial board comprising of international specialists.