Ruifeng Shi, Jing Cen, Gunilla Westermark, Sheng Zhao, Nils Welsh, Zilin Sun, Joey Lau Börjesson
{"title":"CLEC11A可改善人β细胞的胰岛素分泌,促进细胞增殖。","authors":"Ruifeng Shi, Jing Cen, Gunilla Westermark, Sheng Zhao, Nils Welsh, Zilin Sun, Joey Lau Börjesson","doi":"10.1530/JME-22-0066","DOIUrl":null,"url":null,"abstract":"<p><p>Beta-cell dysfunction is a hallmark of disease progression in patients with diabetes. Research has been focused on maintaining and restoring beta-cell function during diabetes development. The aims of this study were to explore the expression of C-type lectin domain containing 11A (CLEC11A), a secreted sulphated glycoprotein, in human islets and to evaluate the effects of CLEC11A on beta-cell function and proliferation in vitro. To test these hypotheses, human islets and human EndoC-βH1 cell line were used in this study. We identified that CLEC11A was expressed in beta-cells and alpha-cells in human islets but not in EndoC-βH1 cells, whereas the receptor of CLEC11A called integrin subunit alpha 11 was found in both human islets and EndoC-βH1 cells. Long-term treatment with exogenous recombinant human CLEC11A (rhCLEC11A) accentuated glucose-stimulated insulin secretion, insulin content, and proliferation from human islets and EndoC-βH1 cells, which was partially due to the accentuated expression levels of transcription factors MAFA and PDX1. However, the impaired beta-cell function and reduced mRNA expression of INS and MAFA in EndoC-βH1 cells that were caused by chronic palmitate exposure could only be partially improved by the introduction of rhCLEC11A. Based on these results, we conclude that rhCLEC11A promotes insulin secretion, insulin content, and proliferation in human beta-cells, which are associated with the accentuated expression levels of transcription factors MAFA and PDX1. CLEC11A, therefore, may provide a novel therapeutic target for maintaining beta-cell function in patients with diabetes.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"71 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326638/pdf/","citationCount":"0","resultStr":"{\"title\":\"CLEC11A improves insulin secretion and promotes cell proliferation in human beta-cells.\",\"authors\":\"Ruifeng Shi, Jing Cen, Gunilla Westermark, Sheng Zhao, Nils Welsh, Zilin Sun, Joey Lau Börjesson\",\"doi\":\"10.1530/JME-22-0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Beta-cell dysfunction is a hallmark of disease progression in patients with diabetes. Research has been focused on maintaining and restoring beta-cell function during diabetes development. The aims of this study were to explore the expression of C-type lectin domain containing 11A (CLEC11A), a secreted sulphated glycoprotein, in human islets and to evaluate the effects of CLEC11A on beta-cell function and proliferation in vitro. To test these hypotheses, human islets and human EndoC-βH1 cell line were used in this study. We identified that CLEC11A was expressed in beta-cells and alpha-cells in human islets but not in EndoC-βH1 cells, whereas the receptor of CLEC11A called integrin subunit alpha 11 was found in both human islets and EndoC-βH1 cells. Long-term treatment with exogenous recombinant human CLEC11A (rhCLEC11A) accentuated glucose-stimulated insulin secretion, insulin content, and proliferation from human islets and EndoC-βH1 cells, which was partially due to the accentuated expression levels of transcription factors MAFA and PDX1. However, the impaired beta-cell function and reduced mRNA expression of INS and MAFA in EndoC-βH1 cells that were caused by chronic palmitate exposure could only be partially improved by the introduction of rhCLEC11A. Based on these results, we conclude that rhCLEC11A promotes insulin secretion, insulin content, and proliferation in human beta-cells, which are associated with the accentuated expression levels of transcription factors MAFA and PDX1. CLEC11A, therefore, may provide a novel therapeutic target for maintaining beta-cell function in patients with diabetes.</p>\",\"PeriodicalId\":16570,\"journal\":{\"name\":\"Journal of molecular endocrinology\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326638/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JME-22-0066\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-22-0066","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
CLEC11A improves insulin secretion and promotes cell proliferation in human beta-cells.
Beta-cell dysfunction is a hallmark of disease progression in patients with diabetes. Research has been focused on maintaining and restoring beta-cell function during diabetes development. The aims of this study were to explore the expression of C-type lectin domain containing 11A (CLEC11A), a secreted sulphated glycoprotein, in human islets and to evaluate the effects of CLEC11A on beta-cell function and proliferation in vitro. To test these hypotheses, human islets and human EndoC-βH1 cell line were used in this study. We identified that CLEC11A was expressed in beta-cells and alpha-cells in human islets but not in EndoC-βH1 cells, whereas the receptor of CLEC11A called integrin subunit alpha 11 was found in both human islets and EndoC-βH1 cells. Long-term treatment with exogenous recombinant human CLEC11A (rhCLEC11A) accentuated glucose-stimulated insulin secretion, insulin content, and proliferation from human islets and EndoC-βH1 cells, which was partially due to the accentuated expression levels of transcription factors MAFA and PDX1. However, the impaired beta-cell function and reduced mRNA expression of INS and MAFA in EndoC-βH1 cells that were caused by chronic palmitate exposure could only be partially improved by the introduction of rhCLEC11A. Based on these results, we conclude that rhCLEC11A promotes insulin secretion, insulin content, and proliferation in human beta-cells, which are associated with the accentuated expression levels of transcription factors MAFA and PDX1. CLEC11A, therefore, may provide a novel therapeutic target for maintaining beta-cell function in patients with diabetes.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.