具有微观结构的介质动力学的光滑几何方法

Ernst Binz , Manuel de Leon , Dan Socolescu
{"title":"具有微观结构的介质动力学的光滑几何方法","authors":"Ernst Binz ,&nbsp;Manuel de Leon ,&nbsp;Dan Socolescu","doi":"10.1016/S1251-8069(98)80030-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we show that the space of configurations of a medium with a microstructure is a principal bundle over the manifold of embeddings of the underlying macromedia. The structure group is just the group of gauge transformations. An appropriate Lagrangian function is chosen defining the dynamics of the system. The Cosserat media are considered as an example.</p></div>","PeriodicalId":100304,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","volume":"326 4","pages":"Pages 227-232"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1251-8069(98)80030-4","citationCount":"6","resultStr":"{\"title\":\"On a smooth geometric approach to the dynamics of media with microstructures\",\"authors\":\"Ernst Binz ,&nbsp;Manuel de Leon ,&nbsp;Dan Socolescu\",\"doi\":\"10.1016/S1251-8069(98)80030-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note we show that the space of configurations of a medium with a microstructure is a principal bundle over the manifold of embeddings of the underlying macromedia. The structure group is just the group of gauge transformations. An appropriate Lagrangian function is chosen defining the dynamics of the system. The Cosserat media are considered as an example.</p></div>\",\"PeriodicalId\":100304,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy\",\"volume\":\"326 4\",\"pages\":\"Pages 227-232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1251-8069(98)80030-4\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1251806998800304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1251806998800304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们证明了具有微观结构的介质的构型空间是底层宏媒体嵌入流形上的主束。结构群就是规范变换的群。选择一个合适的拉格朗日函数来定义系统的动力学。Cosserat媒体就是一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a smooth geometric approach to the dynamics of media with microstructures

In this note we show that the space of configurations of a medium with a microstructure is a principal bundle over the manifold of embeddings of the underlying macromedia. The structure group is just the group of gauge transformations. An appropriate Lagrangian function is chosen defining the dynamics of the system. The Cosserat media are considered as an example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信