低功耗384通道主动复用神经接口的设计与仿真。

Gabriella Shull, Yieljae Shin, Jonathan Viventi, Thomas Jochum, James Morizio, Kyung Jin Seo, Hui Fang
{"title":"低功耗384通道主动复用神经接口的设计与仿真。","authors":"Gabriella Shull,&nbsp;Yieljae Shin,&nbsp;Jonathan Viventi,&nbsp;Thomas Jochum,&nbsp;James Morizio,&nbsp;Kyung Jin Seo,&nbsp;Hui Fang","doi":"10.1109/biocas54905.2022.9948553","DOIUrl":null,"url":null,"abstract":"<p><p>Brain computer interfaces (BCIs) provide clinical benefits including partial restoration of lost motor control, vision, speech, and hearing. A fundamental limitation of existing BCIs is their inability to span several areas (> cm<sup>2</sup>) of the cortex with fine (<100 μm) resolution. One challenge of scaling neural interfaces is output wiring and connector sizes as each channel must be independently routed out of the brain. Time division multiplexing (TDM) overcomes this by enabling several channels to share the same output wire at the cost of added noise. This work leverages a 130-nm CMOS process and transfer printing to design and simulate a 384-channel actively multiplexed array, which minimizes noise by adding front end filtering and amplification to every electrode site (pixel). The pixels are 50 μm × 50 μm and enable recording of all 384 channels at 30 kHz with a gain of 22.3 dB, noise of 9.57 μV rms, bandwidth of 0.1 Hz - 10 kHz, while only consuming 0.63 μW/channel. This work can be applied broadly across neural interfaces to create high channel-count arrays and ultimately improve BCIs.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2022 ","pages":"477-481"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331316/pdf/nihms-1912275.pdf","citationCount":"0","resultStr":"{\"title\":\"Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface.\",\"authors\":\"Gabriella Shull,&nbsp;Yieljae Shin,&nbsp;Jonathan Viventi,&nbsp;Thomas Jochum,&nbsp;James Morizio,&nbsp;Kyung Jin Seo,&nbsp;Hui Fang\",\"doi\":\"10.1109/biocas54905.2022.9948553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain computer interfaces (BCIs) provide clinical benefits including partial restoration of lost motor control, vision, speech, and hearing. A fundamental limitation of existing BCIs is their inability to span several areas (> cm<sup>2</sup>) of the cortex with fine (<100 μm) resolution. One challenge of scaling neural interfaces is output wiring and connector sizes as each channel must be independently routed out of the brain. Time division multiplexing (TDM) overcomes this by enabling several channels to share the same output wire at the cost of added noise. This work leverages a 130-nm CMOS process and transfer printing to design and simulate a 384-channel actively multiplexed array, which minimizes noise by adding front end filtering and amplification to every electrode site (pixel). The pixels are 50 μm × 50 μm and enable recording of all 384 channels at 30 kHz with a gain of 22.3 dB, noise of 9.57 μV rms, bandwidth of 0.1 Hz - 10 kHz, while only consuming 0.63 μW/channel. This work can be applied broadly across neural interfaces to create high channel-count arrays and ultimately improve BCIs.</p>\",\"PeriodicalId\":73279,\"journal\":{\"name\":\"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"2022 \",\"pages\":\"477-481\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331316/pdf/nihms-1912275.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/biocas54905.2022.9948553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/biocas54905.2022.9948553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑机接口(bci)提供临床益处,包括部分恢复失去的运动控制,视觉,语言和听力。现有脑机接口的一个基本限制是它们无法跨越几个区域(> cm2)的精细(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface.

Brain computer interfaces (BCIs) provide clinical benefits including partial restoration of lost motor control, vision, speech, and hearing. A fundamental limitation of existing BCIs is their inability to span several areas (> cm2) of the cortex with fine (<100 μm) resolution. One challenge of scaling neural interfaces is output wiring and connector sizes as each channel must be independently routed out of the brain. Time division multiplexing (TDM) overcomes this by enabling several channels to share the same output wire at the cost of added noise. This work leverages a 130-nm CMOS process and transfer printing to design and simulate a 384-channel actively multiplexed array, which minimizes noise by adding front end filtering and amplification to every electrode site (pixel). The pixels are 50 μm × 50 μm and enable recording of all 384 channels at 30 kHz with a gain of 22.3 dB, noise of 9.57 μV rms, bandwidth of 0.1 Hz - 10 kHz, while only consuming 0.63 μW/channel. This work can be applied broadly across neural interfaces to create high channel-count arrays and ultimately improve BCIs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信