Rachael T Kha, Daniel E Rivera, Predrag Klasnja, Eric Hekler
{"title":"具有混合数据划分和离散同时扰动随机近似的行为干预的特征动态建模。","authors":"Rachael T Kha, Daniel E Rivera, Predrag Klasnja, Eric Hekler","doi":"10.23919/acc55779.2023.10156304","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the use of discrete simultaneous perturbation stochastic approximation (DSPSA) as a routine method to efficiently determine features and parameters of idiographic (i.e. single subject) dynamic models for personalized behavioral interventions using various partitions of estimation and validation data. DSPSA is demonstrated as a valuable method to search over model features and regressor orders of AutoRegressive with eXogenous input estimated models using participant data from <i>Just Walk</i> (a behavioral intervention to promote physical activity in sedentary adults); results of DSPSA are compared to those of exhaustive search. In <i>Just Walk</i>, DSPSA efficiently and quickly estimates models of walking behavior, which can then be used to develop control systems to optimize the impacts of behavioral interventions. The use of DSPSA to evaluate models using various partitions of individual data into estimation and validation data sets also highlights data partitioning as an important feature of idiographic modeling that should be carefully considered.</p>","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":"2023 ","pages":"283-288"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327578/pdf/nihms-1897912.pdf","citationCount":"0","resultStr":"{\"title\":\"Idiographic Dynamic Modeling for Behavioral Interventions with Mixed Data Partitioning and Discrete Simultaneous Perturbation Stochastic Approximation.\",\"authors\":\"Rachael T Kha, Daniel E Rivera, Predrag Klasnja, Eric Hekler\",\"doi\":\"10.23919/acc55779.2023.10156304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the use of discrete simultaneous perturbation stochastic approximation (DSPSA) as a routine method to efficiently determine features and parameters of idiographic (i.e. single subject) dynamic models for personalized behavioral interventions using various partitions of estimation and validation data. DSPSA is demonstrated as a valuable method to search over model features and regressor orders of AutoRegressive with eXogenous input estimated models using participant data from <i>Just Walk</i> (a behavioral intervention to promote physical activity in sedentary adults); results of DSPSA are compared to those of exhaustive search. In <i>Just Walk</i>, DSPSA efficiently and quickly estimates models of walking behavior, which can then be used to develop control systems to optimize the impacts of behavioral interventions. The use of DSPSA to evaluate models using various partitions of individual data into estimation and validation data sets also highlights data partitioning as an important feature of idiographic modeling that should be carefully considered.</p>\",\"PeriodicalId\":74510,\"journal\":{\"name\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"volume\":\"2023 \",\"pages\":\"283-288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327578/pdf/nihms-1897912.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/acc55779.2023.10156304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc55779.2023.10156304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Idiographic Dynamic Modeling for Behavioral Interventions with Mixed Data Partitioning and Discrete Simultaneous Perturbation Stochastic Approximation.
This paper presents the use of discrete simultaneous perturbation stochastic approximation (DSPSA) as a routine method to efficiently determine features and parameters of idiographic (i.e. single subject) dynamic models for personalized behavioral interventions using various partitions of estimation and validation data. DSPSA is demonstrated as a valuable method to search over model features and regressor orders of AutoRegressive with eXogenous input estimated models using participant data from Just Walk (a behavioral intervention to promote physical activity in sedentary adults); results of DSPSA are compared to those of exhaustive search. In Just Walk, DSPSA efficiently and quickly estimates models of walking behavior, which can then be used to develop control systems to optimize the impacts of behavioral interventions. The use of DSPSA to evaluate models using various partitions of individual data into estimation and validation data sets also highlights data partitioning as an important feature of idiographic modeling that should be carefully considered.