未电离氨对幼年斑马鱼的致死和亚致死毒性。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Célio Freire Mariz, Maria Karolaine de Melo Alves, Shaieny Marcela Ventura Dos Santos, Romulo Nepomuceno Alves, Paulo S M Carvalho
{"title":"未电离氨对幼年斑马鱼的致死和亚致死毒性。","authors":"Célio Freire Mariz,&nbsp;Maria Karolaine de Melo Alves,&nbsp;Shaieny Marcela Ventura Dos Santos,&nbsp;Romulo Nepomuceno Alves,&nbsp;Paulo S M Carvalho","doi":"10.1089/zeb.2022.0064","DOIUrl":null,"url":null,"abstract":"Un-ionized ammonia (NH3) is a prevalent contaminant found in aquatic ecosystems, frequently associated with complex mixtures of other toxic contaminants. Early embryo-larval stages of zebrafish Danio rerio became an important model for water quality monitoring, and it is necessary to characterize its susceptibility to NH3 exposure. Fertilized eggs were exposed to NH3 concentrations ranging from 0.02 to 5.23 mg NH3 L-1 until 168 h postfertilization (hpf). The lethal concentration to 50% of exposed zebrafish during 96 h was 2.07 mg NH3 L-1, 25% above the median value reported values for early developmental stages of fishes. Sublethal toxicity endpoints indicated the lowest observed effect concentrations for slow blood circulation at 24 hpf, decreased heart ventricular contractions at 72 hpf, incomplete yolk sac absorption at 96 hpf, failure in swim bladder inflation at 96 hpf, developmental retardation at 96 hpf, decreased total length, decreased swimming speed, altered trajectories, and acetylcholinesterase inhibition at 168 hpf of 0.85, 0.06, 0.15, 0.06, 0.15, 0.61, 1.35, 0.35, and 0.85 mg NH3 L-1, respectively. Environmentally relevant NH3 concentrations can affect zebrafish's early development and larval viability, and our results help discriminate NH3 contribution to the toxicity of complex environmental mixtures when zebrafish is used in water quality monitoring.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lethal and Sublethal Toxicity of Un-Ionized Ammonia to Early-Life Stages of <i>Danio rerio</i>.\",\"authors\":\"Célio Freire Mariz,&nbsp;Maria Karolaine de Melo Alves,&nbsp;Shaieny Marcela Ventura Dos Santos,&nbsp;Romulo Nepomuceno Alves,&nbsp;Paulo S M Carvalho\",\"doi\":\"10.1089/zeb.2022.0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Un-ionized ammonia (NH3) is a prevalent contaminant found in aquatic ecosystems, frequently associated with complex mixtures of other toxic contaminants. Early embryo-larval stages of zebrafish Danio rerio became an important model for water quality monitoring, and it is necessary to characterize its susceptibility to NH3 exposure. Fertilized eggs were exposed to NH3 concentrations ranging from 0.02 to 5.23 mg NH3 L-1 until 168 h postfertilization (hpf). The lethal concentration to 50% of exposed zebrafish during 96 h was 2.07 mg NH3 L-1, 25% above the median value reported values for early developmental stages of fishes. Sublethal toxicity endpoints indicated the lowest observed effect concentrations for slow blood circulation at 24 hpf, decreased heart ventricular contractions at 72 hpf, incomplete yolk sac absorption at 96 hpf, failure in swim bladder inflation at 96 hpf, developmental retardation at 96 hpf, decreased total length, decreased swimming speed, altered trajectories, and acetylcholinesterase inhibition at 168 hpf of 0.85, 0.06, 0.15, 0.06, 0.15, 0.61, 1.35, 0.35, and 0.85 mg NH3 L-1, respectively. Environmentally relevant NH3 concentrations can affect zebrafish's early development and larval viability, and our results help discriminate NH3 contribution to the toxicity of complex environmental mixtures when zebrafish is used in water quality monitoring.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/zeb.2022.0064\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2022.0064","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非电离氨(NH3)是水生生态系统中普遍存在的污染物,经常与其他有毒污染物的复杂混合物有关。斑马鱼早期胚胎-幼虫期是水质监测的重要模型,有必要对其NH3暴露敏感性进行研究。将受精卵暴露于浓度为0.02 ~ 5.23 mg NH3 L-1的环境中,直至受精后168 h。在96 h内,对50%的暴露斑马鱼的致死浓度为2.07 mg NH3 L-1,比鱼类早期发育阶段报道的中值高25%。亚致死毒性终点显示,观察到的最低影响浓度分别为:24 hpf时血液循环缓慢,72 hpf时心室收缩减少,96 hpf时卵黄囊吸收不完全,96 hpf时膀胱肿胀失败,96 hpf时发育迟缓,总长度缩短,游泳速度减慢,运动轨迹改变,168 hpf时乙酰胆碱酯酶抑制浓度分别为0.85、0.06、0.15、0.06、0.15、0.61、1.35、0.35和0.85 mg NH3 L-1。环境相关的NH3浓度会影响斑马鱼的早期发育和幼虫的生存能力,本研究结果有助于斑马鱼在水质监测中区分复杂环境混合物中NH3对毒性的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lethal and Sublethal Toxicity of Un-Ionized Ammonia to Early-Life Stages of Danio rerio.
Un-ionized ammonia (NH3) is a prevalent contaminant found in aquatic ecosystems, frequently associated with complex mixtures of other toxic contaminants. Early embryo-larval stages of zebrafish Danio rerio became an important model for water quality monitoring, and it is necessary to characterize its susceptibility to NH3 exposure. Fertilized eggs were exposed to NH3 concentrations ranging from 0.02 to 5.23 mg NH3 L-1 until 168 h postfertilization (hpf). The lethal concentration to 50% of exposed zebrafish during 96 h was 2.07 mg NH3 L-1, 25% above the median value reported values for early developmental stages of fishes. Sublethal toxicity endpoints indicated the lowest observed effect concentrations for slow blood circulation at 24 hpf, decreased heart ventricular contractions at 72 hpf, incomplete yolk sac absorption at 96 hpf, failure in swim bladder inflation at 96 hpf, developmental retardation at 96 hpf, decreased total length, decreased swimming speed, altered trajectories, and acetylcholinesterase inhibition at 168 hpf of 0.85, 0.06, 0.15, 0.06, 0.15, 0.61, 1.35, 0.35, and 0.85 mg NH3 L-1, respectively. Environmentally relevant NH3 concentrations can affect zebrafish's early development and larval viability, and our results help discriminate NH3 contribution to the toxicity of complex environmental mixtures when zebrafish is used in water quality monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信