{"title":"COVID-19患者的氧化应激、DNA损伤和炎症","authors":"Guven Bektemur, Kubra Bozali, Sahin Colak, Selman Aktas, Eray Metin Guler","doi":"10.14744/nci.2022.00947","DOIUrl":null,"url":null,"abstract":"OBJECTIVE Severe inflammation and oxidative stress seen in COVID-19 patients cause cumulative antiviral effects, and serious inflammation increases tissue, oxidative damage, and DNA damage. Therefore, in this study, oxidative stress, DNA damage, and inflammation biomarkers were investigated in patients diagnosed with COVID-19. METHODS In this study, blood samples were obtained from 150 Covid-19 patients diagnosed by polymerase chain reaction and 150 healthy volunteers with the same demographic characteristics. Total oxidant status (TOS), total antioxidant status (TAS), total thiol (TT), native thiol, and myeloperoxidase (MPO) activities were measured by photometric methods. The levels of tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6), which are inflammation markers, were measured by the ELISA method using commercial kits. The genotoxic effect was evaluated by Comet Assay. RESULTS The oxidative stress biomarkers; Disulfide, TOS, MPO, oxidative stress index, and IL-1β, IL-6, and TNF-α levels of inflammation biomarkers and the DNA damage in COVID-19 patients were increased (p<0.001), and the levels of TAS, TT, and NT In COVID-19 patients were decreased (p<0.001). CONCLUSION In COVID-19 patients, induced DNA damage, inflammation, and oxidative stress can guide the prognosis and treatment strategies of the disease.","PeriodicalId":19164,"journal":{"name":"Northern Clinics of Istanbul","volume":"10 3","pages":"335-340"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/19/NCI-10-335.PMC10331251.pdf","citationCount":"1","resultStr":"{\"title\":\"Oxidative stress, DNA damage, and inflammation in COVID-19 patients.\",\"authors\":\"Guven Bektemur, Kubra Bozali, Sahin Colak, Selman Aktas, Eray Metin Guler\",\"doi\":\"10.14744/nci.2022.00947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OBJECTIVE Severe inflammation and oxidative stress seen in COVID-19 patients cause cumulative antiviral effects, and serious inflammation increases tissue, oxidative damage, and DNA damage. Therefore, in this study, oxidative stress, DNA damage, and inflammation biomarkers were investigated in patients diagnosed with COVID-19. METHODS In this study, blood samples were obtained from 150 Covid-19 patients diagnosed by polymerase chain reaction and 150 healthy volunteers with the same demographic characteristics. Total oxidant status (TOS), total antioxidant status (TAS), total thiol (TT), native thiol, and myeloperoxidase (MPO) activities were measured by photometric methods. The levels of tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6), which are inflammation markers, were measured by the ELISA method using commercial kits. The genotoxic effect was evaluated by Comet Assay. RESULTS The oxidative stress biomarkers; Disulfide, TOS, MPO, oxidative stress index, and IL-1β, IL-6, and TNF-α levels of inflammation biomarkers and the DNA damage in COVID-19 patients were increased (p<0.001), and the levels of TAS, TT, and NT In COVID-19 patients were decreased (p<0.001). CONCLUSION In COVID-19 patients, induced DNA damage, inflammation, and oxidative stress can guide the prognosis and treatment strategies of the disease.\",\"PeriodicalId\":19164,\"journal\":{\"name\":\"Northern Clinics of Istanbul\",\"volume\":\"10 3\",\"pages\":\"335-340\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/19/NCI-10-335.PMC10331251.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Northern Clinics of Istanbul\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14744/nci.2022.00947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Northern Clinics of Istanbul","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14744/nci.2022.00947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Oxidative stress, DNA damage, and inflammation in COVID-19 patients.
OBJECTIVE Severe inflammation and oxidative stress seen in COVID-19 patients cause cumulative antiviral effects, and serious inflammation increases tissue, oxidative damage, and DNA damage. Therefore, in this study, oxidative stress, DNA damage, and inflammation biomarkers were investigated in patients diagnosed with COVID-19. METHODS In this study, blood samples were obtained from 150 Covid-19 patients diagnosed by polymerase chain reaction and 150 healthy volunteers with the same demographic characteristics. Total oxidant status (TOS), total antioxidant status (TAS), total thiol (TT), native thiol, and myeloperoxidase (MPO) activities were measured by photometric methods. The levels of tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6), which are inflammation markers, were measured by the ELISA method using commercial kits. The genotoxic effect was evaluated by Comet Assay. RESULTS The oxidative stress biomarkers; Disulfide, TOS, MPO, oxidative stress index, and IL-1β, IL-6, and TNF-α levels of inflammation biomarkers and the DNA damage in COVID-19 patients were increased (p<0.001), and the levels of TAS, TT, and NT In COVID-19 patients were decreased (p<0.001). CONCLUSION In COVID-19 patients, induced DNA damage, inflammation, and oxidative stress can guide the prognosis and treatment strategies of the disease.