增强肝纤维化评分的性能,与振动控制的瞬时弹性成像数据的比较,以及在社区肝脏服务中预测显著肝纤维化的简单算法的开发:回顾性评估。

IF 3.1 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Tina Reinson, Janisha Patel, Mead Mathews, Derek Fountain, Ryan M Buchanan, Christopher D Byrne
{"title":"增强肝纤维化评分的性能,与振动控制的瞬时弹性成像数据的比较,以及在社区肝脏服务中预测显著肝纤维化的简单算法的开发:回顾性评估。","authors":"Tina Reinson,&nbsp;Janisha Patel,&nbsp;Mead Mathews,&nbsp;Derek Fountain,&nbsp;Ryan M Buchanan,&nbsp;Christopher D Byrne","doi":"10.14218/JCTH.2022.00335","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Liver fibrosis is a key risk factor for cirrhosis, hepatocellular carcinoma and end stage liver failure. The National Institute for Health and Care Excellence guidelines for assessment for advanced (≥F3) liver fibrosis in people with nonalcoholic fatty liver disease recommend the use of enhanced liver fibrosis (ELF) test, followed by vibration-controlled transient elastography (VCTE). Performance of ELF at predicting significant (≥F2) fibrosis in real-world practice is uncertain. To assess the accuracy of ELF using VCTE; investigate the optimum ELF cutoff value to identify ≥F2 and ≥F3; and develop a simple algorithm, with and without ELF score, for detecting ≥F2.</p><p><strong>Methods: </strong>Retrospective evaluation of patients referred to a Community Liver Service for VCTE, Jan-Dec 2020. Assessment included: body mass index (BMI), diabetes status, alanine aminotransferase (ALT) levels, ELF score and biopsy-validated fibrosis stages according to VCTE.</p><p><strong>Results: </strong>Data from 273 patients were available. <i>n</i>=110 patients had diabetes. ELF showed fair performance for ≥F2 and ≥F3, area under the curve (AUC) = 0.70, 95% confidence interval (CI) 0.64-0.76 and AUC=0.72, 95% CI: 0.65-0.79 respectively. For ≥F2 Youden's index for ELF=9.85 and for ≥F3, ELF=9.95. Combining ALT, BMI, and HbA1c (ALBA algorithm) to predict ≥F2 showed good performance (AUC=0.80, 95% CI: 0.69-0.92), adding ALBA to ELF improved performance (AUC=0.82, 95% CI: 0.77-0.88). Results were independently validated.</p><p><strong>Conclusions: </strong>Optimal ELF cutoff for ≥F2 is 9.85 and 9.95 for ≥F3. ALT, BMI, and HbA1c (ALBA algorithm) can stratify patients at risk of ≥F2. ELF performance is improved by adding ALBA.</p>","PeriodicalId":15484,"journal":{"name":"Journal of Clinical and Translational Hepatology","volume":"11 4","pages":"800-808"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a5/7f/JCTH-11-800.PMC10318295.pdf","citationCount":"2","resultStr":"{\"title\":\"Performance of the Enhanced Liver Fibrosis Score, Comparison with Vibration-controlled Transient Elastography Data, and Development of a Simple Algorithm to Predict Significant Liver Fibrosis in a Community-based Liver Service: A Retrospective Evaluation.\",\"authors\":\"Tina Reinson,&nbsp;Janisha Patel,&nbsp;Mead Mathews,&nbsp;Derek Fountain,&nbsp;Ryan M Buchanan,&nbsp;Christopher D Byrne\",\"doi\":\"10.14218/JCTH.2022.00335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Liver fibrosis is a key risk factor for cirrhosis, hepatocellular carcinoma and end stage liver failure. The National Institute for Health and Care Excellence guidelines for assessment for advanced (≥F3) liver fibrosis in people with nonalcoholic fatty liver disease recommend the use of enhanced liver fibrosis (ELF) test, followed by vibration-controlled transient elastography (VCTE). Performance of ELF at predicting significant (≥F2) fibrosis in real-world practice is uncertain. To assess the accuracy of ELF using VCTE; investigate the optimum ELF cutoff value to identify ≥F2 and ≥F3; and develop a simple algorithm, with and without ELF score, for detecting ≥F2.</p><p><strong>Methods: </strong>Retrospective evaluation of patients referred to a Community Liver Service for VCTE, Jan-Dec 2020. Assessment included: body mass index (BMI), diabetes status, alanine aminotransferase (ALT) levels, ELF score and biopsy-validated fibrosis stages according to VCTE.</p><p><strong>Results: </strong>Data from 273 patients were available. <i>n</i>=110 patients had diabetes. ELF showed fair performance for ≥F2 and ≥F3, area under the curve (AUC) = 0.70, 95% confidence interval (CI) 0.64-0.76 and AUC=0.72, 95% CI: 0.65-0.79 respectively. For ≥F2 Youden's index for ELF=9.85 and for ≥F3, ELF=9.95. Combining ALT, BMI, and HbA1c (ALBA algorithm) to predict ≥F2 showed good performance (AUC=0.80, 95% CI: 0.69-0.92), adding ALBA to ELF improved performance (AUC=0.82, 95% CI: 0.77-0.88). Results were independently validated.</p><p><strong>Conclusions: </strong>Optimal ELF cutoff for ≥F2 is 9.85 and 9.95 for ≥F3. ALT, BMI, and HbA1c (ALBA algorithm) can stratify patients at risk of ≥F2. ELF performance is improved by adding ALBA.</p>\",\"PeriodicalId\":15484,\"journal\":{\"name\":\"Journal of Clinical and Translational Hepatology\",\"volume\":\"11 4\",\"pages\":\"800-808\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a5/7f/JCTH-11-800.PMC10318295.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical and Translational Hepatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14218/JCTH.2022.00335\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical and Translational Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14218/JCTH.2022.00335","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

背景和目的:肝纤维化是肝硬化、肝细胞癌和终末期肝衰竭的关键危险因素。美国国家健康与护理卓越研究所非酒精性脂肪性肝病患者晚期(≥F3)肝纤维化评估指南推荐使用增强肝纤维化(ELF)试验,然后进行振动控制瞬时弹性成像(VCTE)。在现实生活中,ELF在预测显著(≥F2)纤维化方面的表现尚不确定。利用VCTE评估ELF的准确性;研究最佳ELF截止值,识别≥F2和≥F3;并开发了一种简单的检测≥F2的算法,无论有无ELF评分。方法:回顾性评估2020年1月至12月在社区肝脏服务中心转介的VCTE患者。评估包括:体重指数(BMI)、糖尿病状态、丙氨酸转氨酶(ALT)水平、ELF评分和根据VCTE进行活检验证的纤维化分期。结果:273例患者的数据可用。110例患者患有糖尿病。ELF在≥F2和≥F3时表现良好,曲线下面积(AUC) = 0.70, 95%置信区间(CI) 0.64-0.76, AUC=0.72, 95% CI: 0.65-0.79。≥F2时,ELF的约登指数=9.85,≥F3时,ELF=9.95。结合ALT、BMI和HbA1c (ALBA算法)预测≥F2表现良好(AUC=0.80, 95% CI: 0.69-0.92),在ELF中加入ALBA可改善预测(AUC=0.82, 95% CI: 0.77-0.88)。结果独立验证。结论:≥F2的最佳ELF截止值为9.85,≥F3的最佳ELF截止值为9.95。ALT、BMI和HbA1c (ALBA算法)可以对风险≥F2的患者进行分层。通过添加ALBA,提高了ELF的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Performance of the Enhanced Liver Fibrosis Score, Comparison with Vibration-controlled Transient Elastography Data, and Development of a Simple Algorithm to Predict Significant Liver Fibrosis in a Community-based Liver Service: A Retrospective Evaluation.

Performance of the Enhanced Liver Fibrosis Score, Comparison with Vibration-controlled Transient Elastography Data, and Development of a Simple Algorithm to Predict Significant Liver Fibrosis in a Community-based Liver Service: A Retrospective Evaluation.

Performance of the Enhanced Liver Fibrosis Score, Comparison with Vibration-controlled Transient Elastography Data, and Development of a Simple Algorithm to Predict Significant Liver Fibrosis in a Community-based Liver Service: A Retrospective Evaluation.

Performance of the Enhanced Liver Fibrosis Score, Comparison with Vibration-controlled Transient Elastography Data, and Development of a Simple Algorithm to Predict Significant Liver Fibrosis in a Community-based Liver Service: A Retrospective Evaluation.

Background and aims: Liver fibrosis is a key risk factor for cirrhosis, hepatocellular carcinoma and end stage liver failure. The National Institute for Health and Care Excellence guidelines for assessment for advanced (≥F3) liver fibrosis in people with nonalcoholic fatty liver disease recommend the use of enhanced liver fibrosis (ELF) test, followed by vibration-controlled transient elastography (VCTE). Performance of ELF at predicting significant (≥F2) fibrosis in real-world practice is uncertain. To assess the accuracy of ELF using VCTE; investigate the optimum ELF cutoff value to identify ≥F2 and ≥F3; and develop a simple algorithm, with and without ELF score, for detecting ≥F2.

Methods: Retrospective evaluation of patients referred to a Community Liver Service for VCTE, Jan-Dec 2020. Assessment included: body mass index (BMI), diabetes status, alanine aminotransferase (ALT) levels, ELF score and biopsy-validated fibrosis stages according to VCTE.

Results: Data from 273 patients were available. n=110 patients had diabetes. ELF showed fair performance for ≥F2 and ≥F3, area under the curve (AUC) = 0.70, 95% confidence interval (CI) 0.64-0.76 and AUC=0.72, 95% CI: 0.65-0.79 respectively. For ≥F2 Youden's index for ELF=9.85 and for ≥F3, ELF=9.95. Combining ALT, BMI, and HbA1c (ALBA algorithm) to predict ≥F2 showed good performance (AUC=0.80, 95% CI: 0.69-0.92), adding ALBA to ELF improved performance (AUC=0.82, 95% CI: 0.77-0.88). Results were independently validated.

Conclusions: Optimal ELF cutoff for ≥F2 is 9.85 and 9.95 for ≥F3. ALT, BMI, and HbA1c (ALBA algorithm) can stratify patients at risk of ≥F2. ELF performance is improved by adding ALBA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical and Translational Hepatology
Journal of Clinical and Translational Hepatology GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
6.40
自引率
2.80%
发文量
496
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信