{"title":"细胞通讯网络因子(CCN) 3,4和6在肥胖、肝纤维化和胰岛调节中的作用研究进展","authors":"Viktoria Xega, Tara Alami, Jun-Li Liu","doi":"10.1007/s12079-023-00765-8","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>CCN/WISP (cellular communication network factors, or Wnt-inducted secreted proteins) family of proteins consists of six extracellular matrix (ECM)-associated proteins that regulate development, cell adhesion and proliferation, ECM remodeling, inflammation, and tumorigenesis. In the last two decades, metabolic regulation by these matricellular proteins has been studied extensively, several excellent reviews have covered the roles of CCN1, -2 and − 5. In this brief review, we will focus on those lesser-known members and more recent discoveries, together with other recent articles presenting a more complete picture of the current state of knowledge. We have found that CCN2, -4, and − 5 promote pancreatic islet function, while CCN3 plays a unique and negative role. CCN3 and − 4 are pro-adiposity leading to insulin resistance, but CCN5 and − 6 are anti-adiposity. While CCN2 and − 4 promote tissue fibrosis and inflammation, all other four members are clearly anti-fibrotic. As for cellular signaling, they are known to interact with integrins, other cell membrane proteins and ECM thereby regulate Akt/protein kinase B, myocardin-related transcription factor (MRTF), and focal adhesion kinase. Yet, a cohesive mechanism of action to comprehensively explain those major functions is still lacking.</p>\n </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 2","pages":"297-306"},"PeriodicalIF":3.6000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326175/pdf/12079_2023_Article_765.pdf","citationCount":"1","resultStr":"{\"title\":\"Recent progress on the role of cellular communication network factors (CCN) 3, 4 and 6 in regulating adiposity, liver fibrosis and pancreatic islets\",\"authors\":\"Viktoria Xega, Tara Alami, Jun-Li Liu\",\"doi\":\"10.1007/s12079-023-00765-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>CCN/WISP (cellular communication network factors, or Wnt-inducted secreted proteins) family of proteins consists of six extracellular matrix (ECM)-associated proteins that regulate development, cell adhesion and proliferation, ECM remodeling, inflammation, and tumorigenesis. In the last two decades, metabolic regulation by these matricellular proteins has been studied extensively, several excellent reviews have covered the roles of CCN1, -2 and − 5. In this brief review, we will focus on those lesser-known members and more recent discoveries, together with other recent articles presenting a more complete picture of the current state of knowledge. We have found that CCN2, -4, and − 5 promote pancreatic islet function, while CCN3 plays a unique and negative role. CCN3 and − 4 are pro-adiposity leading to insulin resistance, but CCN5 and − 6 are anti-adiposity. While CCN2 and − 4 promote tissue fibrosis and inflammation, all other four members are clearly anti-fibrotic. As for cellular signaling, they are known to interact with integrins, other cell membrane proteins and ECM thereby regulate Akt/protein kinase B, myocardin-related transcription factor (MRTF), and focal adhesion kinase. Yet, a cohesive mechanism of action to comprehensively explain those major functions is still lacking.</p>\\n </div>\",\"PeriodicalId\":15226,\"journal\":{\"name\":\"Journal of Cell Communication and Signaling\",\"volume\":\"17 2\",\"pages\":\"297-306\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326175/pdf/12079_2023_Article_765.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1007/s12079-023-00765-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1007/s12079-023-00765-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Recent progress on the role of cellular communication network factors (CCN) 3, 4 and 6 in regulating adiposity, liver fibrosis and pancreatic islets
CCN/WISP (cellular communication network factors, or Wnt-inducted secreted proteins) family of proteins consists of six extracellular matrix (ECM)-associated proteins that regulate development, cell adhesion and proliferation, ECM remodeling, inflammation, and tumorigenesis. In the last two decades, metabolic regulation by these matricellular proteins has been studied extensively, several excellent reviews have covered the roles of CCN1, -2 and − 5. In this brief review, we will focus on those lesser-known members and more recent discoveries, together with other recent articles presenting a more complete picture of the current state of knowledge. We have found that CCN2, -4, and − 5 promote pancreatic islet function, while CCN3 plays a unique and negative role. CCN3 and − 4 are pro-adiposity leading to insulin resistance, but CCN5 and − 6 are anti-adiposity. While CCN2 and − 4 promote tissue fibrosis and inflammation, all other four members are clearly anti-fibrotic. As for cellular signaling, they are known to interact with integrins, other cell membrane proteins and ECM thereby regulate Akt/protein kinase B, myocardin-related transcription factor (MRTF), and focal adhesion kinase. Yet, a cohesive mechanism of action to comprehensively explain those major functions is still lacking.
期刊介绍:
The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies.
Research manuscripts can be published under two different sections :
In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research.
In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.