增材制造Ti-6Al-4V的高速率泰勒冲击试验表征:实验

Gianluca Iannitti, Nicola Bonora, Gabriel Testa, Andrew Ruggiero
{"title":"增材制造Ti-6Al-4V的高速率泰勒冲击试验表征:实验","authors":"Gianluca Iannitti,&nbsp;Nicola Bonora,&nbsp;Gabriel Testa,&nbsp;Andrew Ruggiero","doi":"10.1002/mdp2.192","DOIUrl":null,"url":null,"abstract":"<p>Fracture behavior of additively manufactured (AM) Ti-6Al-4V has been investigated under quasistatic and impact loading. Taylor cylinder impact tests, on material printed along different directions, have been performed at various velocity to determine high-rate material deformation and impact velocity for damage initiation. Test results revealed that, although the AM material under quasistatic loading condition shows better characteristics than the corresponding wrought material grade, under impact condition, fracture in AM material occurred at an impact velocity almost half of that of wrought grade and at a strain 10 time less of the quasistatic uniaxial fracture strain. Microscopy investigation seems to indicate that pre-existing microvoids produced by the AM process promote shear band development under impact loading causing fracture at much lower strain.</p>","PeriodicalId":100886,"journal":{"name":"Material Design & Processing Communications","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mdp2.192","citationCount":"1","resultStr":"{\"title\":\"High-rate characterization of additively manufactured Ti-6Al-4V using Taylor cylinder impact test: Experiments\",\"authors\":\"Gianluca Iannitti,&nbsp;Nicola Bonora,&nbsp;Gabriel Testa,&nbsp;Andrew Ruggiero\",\"doi\":\"10.1002/mdp2.192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fracture behavior of additively manufactured (AM) Ti-6Al-4V has been investigated under quasistatic and impact loading. Taylor cylinder impact tests, on material printed along different directions, have been performed at various velocity to determine high-rate material deformation and impact velocity for damage initiation. Test results revealed that, although the AM material under quasistatic loading condition shows better characteristics than the corresponding wrought material grade, under impact condition, fracture in AM material occurred at an impact velocity almost half of that of wrought grade and at a strain 10 time less of the quasistatic uniaxial fracture strain. Microscopy investigation seems to indicate that pre-existing microvoids produced by the AM process promote shear band development under impact loading causing fracture at much lower strain.</p>\",\"PeriodicalId\":100886,\"journal\":{\"name\":\"Material Design & Processing Communications\",\"volume\":\"3 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/mdp2.192\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Design & Processing Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了增材制造(AM) Ti-6Al-4V在准静态和冲击载荷下的断裂行为。Taylor圆柱体冲击试验,沿不同方向印刷的材料,在不同的速度下进行,以确定高速材料变形和冲击速度的破坏起始。试验结果表明,准静态加载条件下的增材制造材料性能优于相应的变形材料等级,但在冲击条件下,增材制造材料的断裂速度几乎是变形材料等级的一半,应变小于准静态单轴断裂应变的10倍。显微镜研究似乎表明,AM工艺产生的预先存在的微空洞促进了冲击载荷下剪切带的发展,导致在低应变下断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-rate characterization of additively manufactured Ti-6Al-4V using Taylor cylinder impact test: Experiments

Fracture behavior of additively manufactured (AM) Ti-6Al-4V has been investigated under quasistatic and impact loading. Taylor cylinder impact tests, on material printed along different directions, have been performed at various velocity to determine high-rate material deformation and impact velocity for damage initiation. Test results revealed that, although the AM material under quasistatic loading condition shows better characteristics than the corresponding wrought material grade, under impact condition, fracture in AM material occurred at an impact velocity almost half of that of wrought grade and at a strain 10 time less of the quasistatic uniaxial fracture strain. Microscopy investigation seems to indicate that pre-existing microvoids produced by the AM process promote shear band development under impact loading causing fracture at much lower strain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信