探索具有扩展相似性的活动景观:谷本是否足够?

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL
Timothy B Dunn, Edgar López-López, Taewon David Kim, José L Medina-Franco, Ramón Alain Miranda-Quintana
{"title":"探索具有扩展相似性的活动景观:谷本是否足够?","authors":"Timothy B Dunn,&nbsp;Edgar López-López,&nbsp;Taewon David Kim,&nbsp;José L Medina-Franco,&nbsp;Ramón Alain Miranda-Quintana","doi":"10.1002/minf.202300056","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding structure-activity landscapes is essential in drug discovery. Similarly, it has been shown that the presence of activity cliffs in compound data sets can have a substantial impact not only on the design progress but also can influence the predictive ability of machine learning models. With the continued expansion of the chemical space and the currently available large and ultra-large libraries, it is imperative to implement efficient tools to analyze the activity landscape of compound data sets rapidly. The goal of this study is to show the applicability of the n-ary indices to quantify the structure-activity landscapes of large compound data sets using different types of structural representation rapidly and efficiently. We also discuss how a recently introduced medoid algorithm provides the foundation to finding optimum correlations between similarity measures and structure-activity rankings. The applicability of the n-ary indices and the medoid algorithm is shown by analyzing the activity landscape of 10 compound data sets with pharmaceutical relevance using three fingerprints of different designs, 16 extended similarity indices, and 11 coincidence thresholds.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploring activity landscapes with extended similarity: is Tanimoto enough?\",\"authors\":\"Timothy B Dunn,&nbsp;Edgar López-López,&nbsp;Taewon David Kim,&nbsp;José L Medina-Franco,&nbsp;Ramón Alain Miranda-Quintana\",\"doi\":\"10.1002/minf.202300056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding structure-activity landscapes is essential in drug discovery. Similarly, it has been shown that the presence of activity cliffs in compound data sets can have a substantial impact not only on the design progress but also can influence the predictive ability of machine learning models. With the continued expansion of the chemical space and the currently available large and ultra-large libraries, it is imperative to implement efficient tools to analyze the activity landscape of compound data sets rapidly. The goal of this study is to show the applicability of the n-ary indices to quantify the structure-activity landscapes of large compound data sets using different types of structural representation rapidly and efficiently. We also discuss how a recently introduced medoid algorithm provides the foundation to finding optimum correlations between similarity measures and structure-activity rankings. The applicability of the n-ary indices and the medoid algorithm is shown by analyzing the activity landscape of 10 compound data sets with pharmaceutical relevance using three fingerprints of different designs, 16 extended similarity indices, and 11 coincidence thresholds.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202300056\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300056","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 1

摘要

了解结构-活性格局对药物发现至关重要。同样,研究表明,复合数据集中活动悬崖的存在不仅会对设计进度产生重大影响,还会影响机器学习模型的预测能力。随着化学空间的不断扩大和目前可用的大型和超大型库,实现高效的工具来快速分析化合物数据集的活动景观是势在必行的。本研究的目的是展示n元指数在使用不同类型的结构表示快速有效地量化大型复合数据集的结构-活动景观方面的适用性。我们还讨论了最近引入的媒质算法如何为寻找相似性度量和结构-活性排名之间的最佳相关性提供基础。通过使用3种不同设计的指纹图谱、16个扩展相似度指标和11个符合阈值对10个具有药物相关性的化合物数据集的活性景观进行分析,验证了n-ary指标和中间算法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring activity landscapes with extended similarity: is Tanimoto enough?

Exploring activity landscapes with extended similarity: is Tanimoto enough?

Understanding structure-activity landscapes is essential in drug discovery. Similarly, it has been shown that the presence of activity cliffs in compound data sets can have a substantial impact not only on the design progress but also can influence the predictive ability of machine learning models. With the continued expansion of the chemical space and the currently available large and ultra-large libraries, it is imperative to implement efficient tools to analyze the activity landscape of compound data sets rapidly. The goal of this study is to show the applicability of the n-ary indices to quantify the structure-activity landscapes of large compound data sets using different types of structural representation rapidly and efficiently. We also discuss how a recently introduced medoid algorithm provides the foundation to finding optimum correlations between similarity measures and structure-activity rankings. The applicability of the n-ary indices and the medoid algorithm is shown by analyzing the activity landscape of 10 compound data sets with pharmaceutical relevance using three fingerprints of different designs, 16 extended similarity indices, and 11 coincidence thresholds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信