Lucas van Duin, Robert Krautz, Sarah Rennie, Robin Andersson
{"title":"转录因子的表达是决定基因共同活性变化的主要因素。","authors":"Lucas van Duin, Robert Krautz, Sarah Rennie, Robin Andersson","doi":"10.15252/msb.202211392","DOIUrl":null,"url":null,"abstract":"<p><p>Many genes are co-expressed and form genomic domains of coordinated gene activity. However, the regulatory determinants of domain co-activity remain unclear. Here, we leverage human individual variation in gene expression to characterize the co-regulatory processes underlying domain co-activity and systematically quantify their effect sizes. We employ transcriptional decomposition to extract from RNA expression data an expression component related to co-activity revealed by genomic positioning. This strategy reveals close to 1,500 co-activity domains, covering most expressed genes, of which the large majority are invariable across individuals. Focusing specifically on domains with high variability in co-activity reveals that contained genes have a higher sharing of eQTLs, a higher variability in enhancer interactions, and an enrichment of binding by variably expressed transcription factors, compared to genes within non-variable domains. Through careful quantification of the relative contributions of regulatory processes underlying co-activity, we find transcription factor expression levels to be the main determinant of gene co-activity. Our results indicate that distal trans effects contribute more than local genetic variation to individual variation in co-activity domains.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":"19 7","pages":"e11392"},"PeriodicalIF":8.5000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333863/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcription factor expression is the main determinant of variability in gene co-activity.\",\"authors\":\"Lucas van Duin, Robert Krautz, Sarah Rennie, Robin Andersson\",\"doi\":\"10.15252/msb.202211392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many genes are co-expressed and form genomic domains of coordinated gene activity. However, the regulatory determinants of domain co-activity remain unclear. Here, we leverage human individual variation in gene expression to characterize the co-regulatory processes underlying domain co-activity and systematically quantify their effect sizes. We employ transcriptional decomposition to extract from RNA expression data an expression component related to co-activity revealed by genomic positioning. This strategy reveals close to 1,500 co-activity domains, covering most expressed genes, of which the large majority are invariable across individuals. Focusing specifically on domains with high variability in co-activity reveals that contained genes have a higher sharing of eQTLs, a higher variability in enhancer interactions, and an enrichment of binding by variably expressed transcription factors, compared to genes within non-variable domains. Through careful quantification of the relative contributions of regulatory processes underlying co-activity, we find transcription factor expression levels to be the main determinant of gene co-activity. Our results indicate that distal trans effects contribute more than local genetic variation to individual variation in co-activity domains.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":\"19 7\",\"pages\":\"e11392\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333863/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15252/msb.202211392\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15252/msb.202211392","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transcription factor expression is the main determinant of variability in gene co-activity.
Many genes are co-expressed and form genomic domains of coordinated gene activity. However, the regulatory determinants of domain co-activity remain unclear. Here, we leverage human individual variation in gene expression to characterize the co-regulatory processes underlying domain co-activity and systematically quantify their effect sizes. We employ transcriptional decomposition to extract from RNA expression data an expression component related to co-activity revealed by genomic positioning. This strategy reveals close to 1,500 co-activity domains, covering most expressed genes, of which the large majority are invariable across individuals. Focusing specifically on domains with high variability in co-activity reveals that contained genes have a higher sharing of eQTLs, a higher variability in enhancer interactions, and an enrichment of binding by variably expressed transcription factors, compared to genes within non-variable domains. Through careful quantification of the relative contributions of regulatory processes underlying co-activity, we find transcription factor expression levels to be the main determinant of gene co-activity. Our results indicate that distal trans effects contribute more than local genetic variation to individual variation in co-activity domains.
期刊介绍:
Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems.
Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.