{"title":"结构稳定性:代谢网络不同于其他生物网络。","authors":"P van Nes, D Bellomo, M J T Reinders, D de Ridder","doi":"10.1155/2009/630695","DOIUrl":null,"url":null,"abstract":"<p><p>In recent work, attempts have been made to link the structure of biochemical networks to their complex dynamics. It was shown that structurally stable network motifs are enriched in such networks. In this work, we investigate to what extent these findings apply to metabolic networks. To this end, we extend a previously proposed method by changing the null model for determining motif enrichment, by using interaction types directly obtained from structural interaction matrices, by generating a distribution of partial derivatives of reaction rates and by simulating enzymatic regulation on metabolic networks. Our findings suggest that the conclusions drawn in previous work cannot be extended to metabolic networks, that is, structurally stable network motifs are not enriched in metabolic networks.</p>","PeriodicalId":72957,"journal":{"name":"EURASIP journal on bioinformatics & systems biology","volume":" ","pages":"630695"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2009/630695","citationCount":"4","resultStr":"{\"title\":\"Stability from structure: metabolic networks are unlike other biological networks.\",\"authors\":\"P van Nes, D Bellomo, M J T Reinders, D de Ridder\",\"doi\":\"10.1155/2009/630695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent work, attempts have been made to link the structure of biochemical networks to their complex dynamics. It was shown that structurally stable network motifs are enriched in such networks. In this work, we investigate to what extent these findings apply to metabolic networks. To this end, we extend a previously proposed method by changing the null model for determining motif enrichment, by using interaction types directly obtained from structural interaction matrices, by generating a distribution of partial derivatives of reaction rates and by simulating enzymatic regulation on metabolic networks. Our findings suggest that the conclusions drawn in previous work cannot be extended to metabolic networks, that is, structurally stable network motifs are not enriched in metabolic networks.</p>\",\"PeriodicalId\":72957,\"journal\":{\"name\":\"EURASIP journal on bioinformatics & systems biology\",\"volume\":\" \",\"pages\":\"630695\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2009/630695\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP journal on bioinformatics & systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2009/630695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP journal on bioinformatics & systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2009/630695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability from structure: metabolic networks are unlike other biological networks.
In recent work, attempts have been made to link the structure of biochemical networks to their complex dynamics. It was shown that structurally stable network motifs are enriched in such networks. In this work, we investigate to what extent these findings apply to metabolic networks. To this end, we extend a previously proposed method by changing the null model for determining motif enrichment, by using interaction types directly obtained from structural interaction matrices, by generating a distribution of partial derivatives of reaction rates and by simulating enzymatic regulation on metabolic networks. Our findings suggest that the conclusions drawn in previous work cannot be extended to metabolic networks, that is, structurally stable network motifs are not enriched in metabolic networks.