嵌套效应模型的贝叶斯网络视图。

Cordula Zeller, Holger Fröhlich, Achim Tresch
{"title":"嵌套效应模型的贝叶斯网络视图。","authors":"Cordula Zeller,&nbsp;Holger Fröhlich,&nbsp;Achim Tresch","doi":"10.1155/2009/195272","DOIUrl":null,"url":null,"abstract":"<p><p>Nested effects models (NEMs) are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the R/Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.</p>","PeriodicalId":72957,"journal":{"name":"EURASIP journal on bioinformatics & systems biology","volume":" ","pages":"195272"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2009/195272","citationCount":"21","resultStr":"{\"title\":\"A Bayesian network view on nested effects models.\",\"authors\":\"Cordula Zeller,&nbsp;Holger Fröhlich,&nbsp;Achim Tresch\",\"doi\":\"10.1155/2009/195272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nested effects models (NEMs) are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the R/Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.</p>\",\"PeriodicalId\":72957,\"journal\":{\"name\":\"EURASIP journal on bioinformatics & systems biology\",\"volume\":\" \",\"pages\":\"195272\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2009/195272\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP journal on bioinformatics & systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2009/195272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP journal on bioinformatics & systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2009/195272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

嵌套效应模型(nem)是一类概率模型,旨在从主动干预信号通路引起的大量可观察到的效应中重建隐藏的信号结构。我们用贝叶斯网络的语言给出了一个更灵活的nem公式。我们的框架构成了原始NEM模型的自然概括,因为它明确地陈述了隐含在原始版本之下的假设。我们的方法为nem提供了新的学习方法,这些方法已经在R/Bioconductor封装nem中实现。我们在模拟研究中验证了这些方法,并将它们应用于酵母的合成致死性数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Bayesian network view on nested effects models.

A Bayesian network view on nested effects models.

A Bayesian network view on nested effects models.

A Bayesian network view on nested effects models.

Nested effects models (NEMs) are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the R/Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信