{"title":"木栓松素对人肝微粒体CYP1A2的选择性抑制作用。","authors":"Sanjita Paudel, Hyoje Jo, Taeho Lee, Sangkyu Lee","doi":"10.1002/bdd.2370","DOIUrl":null,"url":null,"abstract":"<p>Suberosin is a natural phytoconstituent isolated from <i>Citropsis articulata,</i> especially employed for its anticoagulant properties. Although metabolic studies assessing suberosin have been conducted, it is possible interactions with drugs and food have not yet been investigated. In the present study, we analyzed the selective inhibitory effects of suberosin on cytochrome P450 (CYP) enzymes using a cocktail probe assay. Various concentrations of suberosin (0–50 μM) were incubated with isoform-specific CYP probes in human liver microsomes (HLMs). We found that suberosin significantly inhibited CYP1A2-catalyzed phenacetin <i>O</i>-deethylation, exhibiting IC<sub>50</sub> values of 9.39 ± 2.05 and 3.07 ± 0.45 μM with and without preincubation in the presence of β-NADPH, respectively. Moreover, suberosin showed concentration-dependent, but not time-dependent, CYP1A2 inhibition in HLMs, indicating that suberosin acts as a substrate and reversible CYP1A2 inhibitor. Using a Lineweaver-Burk plot, we found that suberosin competitively inhibited CYP1A2-catalyzed phenacetin <i>O</i>-deethylation. Furthermore, suberosin showed similar inhibitory effects on recombinant human CYP1A1 and 1A2. In conclusion, suberosin may elicit herb–drug interactions by selectively inhibiting CYP1A2 during the concurrent administration of drugs that act as CYP1A2 substrates.</p>","PeriodicalId":8865,"journal":{"name":"Biopharmaceutics & Drug Disposition","volume":"44 5","pages":"365-371"},"PeriodicalIF":1.7000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective inhibitory effects of suberosin on CYP1A2 in human liver microsomes\",\"authors\":\"Sanjita Paudel, Hyoje Jo, Taeho Lee, Sangkyu Lee\",\"doi\":\"10.1002/bdd.2370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suberosin is a natural phytoconstituent isolated from <i>Citropsis articulata,</i> especially employed for its anticoagulant properties. Although metabolic studies assessing suberosin have been conducted, it is possible interactions with drugs and food have not yet been investigated. In the present study, we analyzed the selective inhibitory effects of suberosin on cytochrome P450 (CYP) enzymes using a cocktail probe assay. Various concentrations of suberosin (0–50 μM) were incubated with isoform-specific CYP probes in human liver microsomes (HLMs). We found that suberosin significantly inhibited CYP1A2-catalyzed phenacetin <i>O</i>-deethylation, exhibiting IC<sub>50</sub> values of 9.39 ± 2.05 and 3.07 ± 0.45 μM with and without preincubation in the presence of β-NADPH, respectively. Moreover, suberosin showed concentration-dependent, but not time-dependent, CYP1A2 inhibition in HLMs, indicating that suberosin acts as a substrate and reversible CYP1A2 inhibitor. Using a Lineweaver-Burk plot, we found that suberosin competitively inhibited CYP1A2-catalyzed phenacetin <i>O</i>-deethylation. Furthermore, suberosin showed similar inhibitory effects on recombinant human CYP1A1 and 1A2. In conclusion, suberosin may elicit herb–drug interactions by selectively inhibiting CYP1A2 during the concurrent administration of drugs that act as CYP1A2 substrates.</p>\",\"PeriodicalId\":8865,\"journal\":{\"name\":\"Biopharmaceutics & Drug Disposition\",\"volume\":\"44 5\",\"pages\":\"365-371\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopharmaceutics & Drug Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2370\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopharmaceutics & Drug Disposition","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2370","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Selective inhibitory effects of suberosin on CYP1A2 in human liver microsomes
Suberosin is a natural phytoconstituent isolated from Citropsis articulata, especially employed for its anticoagulant properties. Although metabolic studies assessing suberosin have been conducted, it is possible interactions with drugs and food have not yet been investigated. In the present study, we analyzed the selective inhibitory effects of suberosin on cytochrome P450 (CYP) enzymes using a cocktail probe assay. Various concentrations of suberosin (0–50 μM) were incubated with isoform-specific CYP probes in human liver microsomes (HLMs). We found that suberosin significantly inhibited CYP1A2-catalyzed phenacetin O-deethylation, exhibiting IC50 values of 9.39 ± 2.05 and 3.07 ± 0.45 μM with and without preincubation in the presence of β-NADPH, respectively. Moreover, suberosin showed concentration-dependent, but not time-dependent, CYP1A2 inhibition in HLMs, indicating that suberosin acts as a substrate and reversible CYP1A2 inhibitor. Using a Lineweaver-Burk plot, we found that suberosin competitively inhibited CYP1A2-catalyzed phenacetin O-deethylation. Furthermore, suberosin showed similar inhibitory effects on recombinant human CYP1A1 and 1A2. In conclusion, suberosin may elicit herb–drug interactions by selectively inhibiting CYP1A2 during the concurrent administration of drugs that act as CYP1A2 substrates.
期刊介绍:
Biopharmaceutics & Drug Dispositionpublishes original review articles, short communications, and reports in biopharmaceutics, drug disposition, pharmacokinetics and pharmacodynamics, especially those that have a direct relation to the drug discovery/development and the therapeutic use of drugs. These includes:
- animal and human pharmacological studies that focus on therapeutic response. pharmacodynamics, and toxicity related to plasma and tissue concentrations of drugs and their metabolites,
- in vitro and in vivo drug absorption, distribution, metabolism, transport, and excretion studies that facilitate investigations related to the use of drugs in man
- studies on membrane transport and enzymes, including their regulation and the impact of pharmacogenomics on drug absorption and disposition,
- simulation and modeling in drug discovery and development
- theoretical treatises
- includes themed issues and reviews
and exclude manuscripts on
- bioavailability studies reporting only on simple PK parameters such as Cmax, tmax and t1/2 without mechanistic interpretation
- analytical methods