基于生物材料从多能干细胞(PSCs)衍生间充质干细胞(MSCs)的进展和新兴技术。

IF 11.3 1区 医学 Q1 Medicine
Nityanand Prakash, Jiseong Kim, Jieun Jeon, Siyeon Kim, Yoshie Arai, Alvin Bacero Bello, Hansoo Park, Soo-Hong Lee
{"title":"基于生物材料从多能干细胞(PSCs)衍生间充质干细胞(MSCs)的进展和新兴技术。","authors":"Nityanand Prakash, Jiseong Kim, Jieun Jeon, Siyeon Kim, Yoshie Arai, Alvin Bacero Bello, Hansoo Park, Soo-Hong Lee","doi":"10.1186/s40824-023-00371-0","DOIUrl":null,"url":null,"abstract":"<p><p>The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114339/pdf/","citationCount":"0","resultStr":"{\"title\":\"Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs).\",\"authors\":\"Nityanand Prakash, Jiseong Kim, Jieun Jeon, Siyeon Kim, Yoshie Arai, Alvin Bacero Bello, Hansoo Park, Soo-Hong Lee\",\"doi\":\"10.1186/s40824-023-00371-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.</p>\",\"PeriodicalId\":9079,\"journal\":{\"name\":\"Biomaterials Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114339/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40824-023-00371-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40824-023-00371-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

过去十年间,间充质干细胞(MSCs)在临床上的应用急剧增加。间充质干细胞的多线分化潜能和免疫调节特性促进了各种疾病疗法的发现。间充质干细胞可从婴儿和成人组织来源中分离出来,这意味着它们很容易获得。然而,这也引起了人们的担忧,因为各种间充质干细胞来源的异质性限制了它们的有效利用。差异来自供体和组织的特异性差异,如年龄、性别和组织来源。此外,成人来源的间充质干细胞增殖潜力有限,阻碍了其长期疗效。成人间充质干细胞的这些局限性促使研究人员开发出一种生成间充质干细胞的新方法。多能干细胞(PSCs),如胚胎干细胞和诱导多能干细胞(iPSCs),可以分化成各种类型的细胞。本文对间充质干细胞的特点、功能和临床重要性进行了全面综述。比较了现有的间充质干细胞来源,包括成人和婴儿间充质干细胞来源。列举并阐述了从 iPSCs 中提取间充质干细胞的最新技术,重点是二维和三维培养系统中的生物材料辅助方法。最后,介绍了开发高效生产间充质干细胞改良方法的若干机会,目的是推进间充质干细胞的各种临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs).

Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs).

Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs).

Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs).

The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials Research
Biomaterials Research Medicine-Medicine (miscellaneous)
CiteScore
10.20
自引率
3.50%
发文量
63
审稿时长
30 days
期刊介绍: Biomaterials Research, the official journal of the Korean Society for Biomaterials, is an open-access interdisciplinary publication that focuses on all aspects of biomaterials research. The journal covers a wide range of topics including novel biomaterials, advanced techniques for biomaterial synthesis and fabrication, and their application in biomedical fields. Specific areas of interest include functional biomaterials, drug and gene delivery systems, tissue engineering, nanomedicine, nano/micro-biotechnology, bio-imaging, regenerative medicine, medical devices, 3D printing, and stem cell research. By exploring these research areas, Biomaterials Research aims to provide valuable insights and promote advancements in the biomaterials field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信