{"title":"群体基因组结构和选择特征决定了几种花式和肉兔品种的遗传独特性。","authors":"Mohamad Ballan, Samuele Bovo, Francesca Bertolini, Giuseppina Schiavo, Michele Schiavitto, Riccardo Negrini, Luca Fontanesi","doi":"10.1111/jbg.12818","DOIUrl":null,"url":null,"abstract":"<p>Following the recent domestication process of the European rabbit (<i>Oryctolagus cuniculus</i>), many different breeds and lines, distinguished primarily by exterior traits such as coat colour, fur structure and body size and shape, have been constituted. In this study, we genotyped, with a high-density single-nucleotide polymorphism panel, a total of 645 rabbits from 10 fancy breeds (Belgian Hare, Champagne d'Argent, Checkered Giant, Coloured Dwarf, Dwarf Lop, Ermine, Giant Grey, Giant White, Rex and Rhinelander) and three meat breeds (Italian White, Italian Spotted and Italian Silver). ADMIXTURE analysis indicated that breeds with similar phenotypic traits (e.g. coat colour and body size) shared common ancestries. Signatures of selection using two haplotype-based approaches (iHS and XP-EHH), combined with the results obtained with other methods previously reported that we applied to the same breeds, we identified a total of 5079 independent genomic regions with some signatures of selection, covering about 1777 Mb of the rabbit genome. These regions consistently encompassed many genes involved in pigmentation processes (<i>ASIP</i>, <i>EDNRA</i>, <i>EDNRB</i>, <i>KIT</i>, <i>KITLG</i>, <i>MITF</i>, <i>OCA2</i>, <i>TYR</i> and <i>TYRP1</i>), coat structure (<i>LIPH</i>) and body size, including two major genes (<i>LCORL</i> and <i>HMGA2</i>) among many others. This study revealed novel genomic regions under signatures of selection and further demonstrated that population structures and signatures of selection, left into the genome of these rabbit breeds, may contribute to understanding the genetic events that led to their constitution and the complex genetic mechanisms determining the broad phenotypic variability present in these untapped rabbit genetic resources.</p>","PeriodicalId":54885,"journal":{"name":"Journal of Animal Breeding and Genetics","volume":"140 6","pages":"663-678"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbg.12818","citationCount":"0","resultStr":"{\"title\":\"Population genomic structures and signatures of selection define the genetic uniqueness of several fancy and meat rabbit breeds\",\"authors\":\"Mohamad Ballan, Samuele Bovo, Francesca Bertolini, Giuseppina Schiavo, Michele Schiavitto, Riccardo Negrini, Luca Fontanesi\",\"doi\":\"10.1111/jbg.12818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Following the recent domestication process of the European rabbit (<i>Oryctolagus cuniculus</i>), many different breeds and lines, distinguished primarily by exterior traits such as coat colour, fur structure and body size and shape, have been constituted. In this study, we genotyped, with a high-density single-nucleotide polymorphism panel, a total of 645 rabbits from 10 fancy breeds (Belgian Hare, Champagne d'Argent, Checkered Giant, Coloured Dwarf, Dwarf Lop, Ermine, Giant Grey, Giant White, Rex and Rhinelander) and three meat breeds (Italian White, Italian Spotted and Italian Silver). ADMIXTURE analysis indicated that breeds with similar phenotypic traits (e.g. coat colour and body size) shared common ancestries. Signatures of selection using two haplotype-based approaches (iHS and XP-EHH), combined with the results obtained with other methods previously reported that we applied to the same breeds, we identified a total of 5079 independent genomic regions with some signatures of selection, covering about 1777 Mb of the rabbit genome. These regions consistently encompassed many genes involved in pigmentation processes (<i>ASIP</i>, <i>EDNRA</i>, <i>EDNRB</i>, <i>KIT</i>, <i>KITLG</i>, <i>MITF</i>, <i>OCA2</i>, <i>TYR</i> and <i>TYRP1</i>), coat structure (<i>LIPH</i>) and body size, including two major genes (<i>LCORL</i> and <i>HMGA2</i>) among many others. This study revealed novel genomic regions under signatures of selection and further demonstrated that population structures and signatures of selection, left into the genome of these rabbit breeds, may contribute to understanding the genetic events that led to their constitution and the complex genetic mechanisms determining the broad phenotypic variability present in these untapped rabbit genetic resources.</p>\",\"PeriodicalId\":54885,\"journal\":{\"name\":\"Journal of Animal Breeding and Genetics\",\"volume\":\"140 6\",\"pages\":\"663-678\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbg.12818\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Breeding and Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jbg.12818\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Breeding and Genetics","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jbg.12818","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Population genomic structures and signatures of selection define the genetic uniqueness of several fancy and meat rabbit breeds
Following the recent domestication process of the European rabbit (Oryctolagus cuniculus), many different breeds and lines, distinguished primarily by exterior traits such as coat colour, fur structure and body size and shape, have been constituted. In this study, we genotyped, with a high-density single-nucleotide polymorphism panel, a total of 645 rabbits from 10 fancy breeds (Belgian Hare, Champagne d'Argent, Checkered Giant, Coloured Dwarf, Dwarf Lop, Ermine, Giant Grey, Giant White, Rex and Rhinelander) and three meat breeds (Italian White, Italian Spotted and Italian Silver). ADMIXTURE analysis indicated that breeds with similar phenotypic traits (e.g. coat colour and body size) shared common ancestries. Signatures of selection using two haplotype-based approaches (iHS and XP-EHH), combined with the results obtained with other methods previously reported that we applied to the same breeds, we identified a total of 5079 independent genomic regions with some signatures of selection, covering about 1777 Mb of the rabbit genome. These regions consistently encompassed many genes involved in pigmentation processes (ASIP, EDNRA, EDNRB, KIT, KITLG, MITF, OCA2, TYR and TYRP1), coat structure (LIPH) and body size, including two major genes (LCORL and HMGA2) among many others. This study revealed novel genomic regions under signatures of selection and further demonstrated that population structures and signatures of selection, left into the genome of these rabbit breeds, may contribute to understanding the genetic events that led to their constitution and the complex genetic mechanisms determining the broad phenotypic variability present in these untapped rabbit genetic resources.
期刊介绍:
The Journal of Animal Breeding and Genetics publishes original articles by international scientists on genomic selection, and any other topic related to breeding programmes, selection, quantitative genetic, genomics, diversity and evolution of domestic animals. Researchers, teachers, and the animal breeding industry will find the reports of interest. Book reviews appear in many issues.