Dayu Jia, Guanghong Yang, Min Huang, Junchang Xin, Guoren Wang, George Y Yuan
{"title":"一种用于物联网环境的高效隐私保护区块链存储方法。","authors":"Dayu Jia, Guanghong Yang, Min Huang, Junchang Xin, Guoren Wang, George Y Yuan","doi":"10.1007/s11280-023-01172-0","DOIUrl":null,"url":null,"abstract":"<p><p>Blockchain is a key technology to realize decentralized trust management. In recent studies, sharding-based blockchain models are proposed and applied to the resource-constrained Internet of Things (IoT) scenario, and machine learning-based models are presented to improve the query efficiency of the sharding-based blockchains by classifying hot data and storing them locally. However, in some scenarios, these presented blockchain models cannot be deployed because the block features used as input in the learning method are privacy. In this paper, we propose an efficient privacy-preserving blockchain storage method for the IoT environment. The new method classifies hot blocks based on the federated extreme learning machine method and saves the hot blocks through one of the sharded blockchain models called ElasticChain. The features of hot blocks will not be read by other nodes in this method, and user privacy is effectively protected. Meanwhile, hot blocks are saved locally, and data query speed is improved. Furthermore, in order to comprehensively evaluate a hot block, five features of hot blocks are defined, including objective feature, historical popularity, potential popularity, storage requirements and training value. Finally, the experimental results on synthetic data demonstrate the accuracy and efficiency of the proposed blockchain storage model.</p>","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":" ","pages":"1-18"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166043/pdf/","citationCount":"0","resultStr":"{\"title\":\"An efficient privacy-preserving blockchain storage method for internet of things environment.\",\"authors\":\"Dayu Jia, Guanghong Yang, Min Huang, Junchang Xin, Guoren Wang, George Y Yuan\",\"doi\":\"10.1007/s11280-023-01172-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blockchain is a key technology to realize decentralized trust management. In recent studies, sharding-based blockchain models are proposed and applied to the resource-constrained Internet of Things (IoT) scenario, and machine learning-based models are presented to improve the query efficiency of the sharding-based blockchains by classifying hot data and storing them locally. However, in some scenarios, these presented blockchain models cannot be deployed because the block features used as input in the learning method are privacy. In this paper, we propose an efficient privacy-preserving blockchain storage method for the IoT environment. The new method classifies hot blocks based on the federated extreme learning machine method and saves the hot blocks through one of the sharded blockchain models called ElasticChain. The features of hot blocks will not be read by other nodes in this method, and user privacy is effectively protected. Meanwhile, hot blocks are saved locally, and data query speed is improved. Furthermore, in order to comprehensively evaluate a hot block, five features of hot blocks are defined, including objective feature, historical popularity, potential popularity, storage requirements and training value. Finally, the experimental results on synthetic data demonstrate the accuracy and efficiency of the proposed blockchain storage model.</p>\",\"PeriodicalId\":49356,\"journal\":{\"name\":\"World Wide Web-Internet and Web Information Systems\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166043/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web-Internet and Web Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-023-01172-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web-Internet and Web Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11280-023-01172-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An efficient privacy-preserving blockchain storage method for internet of things environment.
Blockchain is a key technology to realize decentralized trust management. In recent studies, sharding-based blockchain models are proposed and applied to the resource-constrained Internet of Things (IoT) scenario, and machine learning-based models are presented to improve the query efficiency of the sharding-based blockchains by classifying hot data and storing them locally. However, in some scenarios, these presented blockchain models cannot be deployed because the block features used as input in the learning method are privacy. In this paper, we propose an efficient privacy-preserving blockchain storage method for the IoT environment. The new method classifies hot blocks based on the federated extreme learning machine method and saves the hot blocks through one of the sharded blockchain models called ElasticChain. The features of hot blocks will not be read by other nodes in this method, and user privacy is effectively protected. Meanwhile, hot blocks are saved locally, and data query speed is improved. Furthermore, in order to comprehensively evaluate a hot block, five features of hot blocks are defined, including objective feature, historical popularity, potential popularity, storage requirements and training value. Finally, the experimental results on synthetic data demonstrate the accuracy and efficiency of the proposed blockchain storage model.
期刊介绍:
World Wide Web: Internet and Web Information Systems (WWW) is an international, archival, peer-reviewed journal which covers all aspects of the World Wide Web, including issues related to architectures, applications, Internet and Web information systems, and communities. The purpose of this journal is to provide an international forum for researchers, professionals, and industrial practitioners to share their rapidly developing knowledge and report on new advances in Internet and web-based systems. The journal also focuses on all database- and information-system topics that relate to the Internet and the Web, particularly on ways to model, design, develop, integrate, and manage these systems.
Appearing quarterly, the journal publishes (1) papers describing original ideas and new results, (2) vision papers, (3) reviews of important techniques in related areas, (4) innovative application papers, and (5) progress reports on major international research projects. Papers published in the WWW journal deal with subjects directly or indirectly related to the World Wide Web. The WWW journal provides timely, in-depth coverage of the most recent developments in the World Wide Web discipline to enable anyone involved to keep up-to-date with this dynamically changing technology.