ASIC2021报告:细胞外囊泡通讯机制会议

Ashley E Russell, Susmita Sil, Shilpa Buch, Michael W Graner
{"title":"ASIC2021报告:细胞外囊泡通讯机制会议","authors":"Ashley E Russell, Susmita Sil, Shilpa Buch, Michael W Graner","doi":"10.20517/evcna.2022.31","DOIUrl":null,"url":null,"abstract":"AD. His group generated human induced pluripotent stem cells (hiPSCs) and differentiated them into neuronal, astrocytic, oligodendrocytic, and microglial cell types. Proteomic profiles of EVs from these differentiated iPSC cells contained cell-type specific markers: excitatory neurons (ATP1A3, NCAM1); astrocytes (LRP1, ITGA6); microglia-like cells (ITGAM, CD300A); and oligodendrocyte-like cells (LAMP2, FTH1). There were also 16 pan-EV marker candidates, including integrins and annexins. Cell type-specific EV proteins could also be found when comparing their data to CSF EV proteomic datasets, which also held true for brain-derived EVs. Correlation networks and pathway analyses identified proteins in each cell subset EVs with co-expression in AD. It was shown that astrocyte-specific EV (ADEV) markers were most significantly associated with AD pathology and cognitive impairment, thereby underscoring the role of ADEVs in AD progression. The hub protein from this module, integrin- β 1 (ITGB1), was elevated in ADEVs purified from total brain-derived EVs and associated with brain A β 42 and tau load in independent cohorts. From this, it was found that astrocytes are likely in an activated state due to IL1B, and astrocytic AD EVs are enriched in ITGB1. This correlated with A β 42 and phosphoTau, and these EVs enhance neuronal uptake via integrin signaling. Thus, this study provides a featured framework and rich resource for analyses of EV functions in neurodegenerative diseases in a cell type-specific manner.","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147373/pdf/","citationCount":"0","resultStr":"{\"title\":\"A report on ASIC2021: a conference on extracellular vesicle communication mechanisms.\",\"authors\":\"Ashley E Russell, Susmita Sil, Shilpa Buch, Michael W Graner\",\"doi\":\"10.20517/evcna.2022.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AD. His group generated human induced pluripotent stem cells (hiPSCs) and differentiated them into neuronal, astrocytic, oligodendrocytic, and microglial cell types. Proteomic profiles of EVs from these differentiated iPSC cells contained cell-type specific markers: excitatory neurons (ATP1A3, NCAM1); astrocytes (LRP1, ITGA6); microglia-like cells (ITGAM, CD300A); and oligodendrocyte-like cells (LAMP2, FTH1). There were also 16 pan-EV marker candidates, including integrins and annexins. Cell type-specific EV proteins could also be found when comparing their data to CSF EV proteomic datasets, which also held true for brain-derived EVs. Correlation networks and pathway analyses identified proteins in each cell subset EVs with co-expression in AD. It was shown that astrocyte-specific EV (ADEV) markers were most significantly associated with AD pathology and cognitive impairment, thereby underscoring the role of ADEVs in AD progression. The hub protein from this module, integrin- β 1 (ITGB1), was elevated in ADEVs purified from total brain-derived EVs and associated with brain A β 42 and tau load in independent cohorts. From this, it was found that astrocytes are likely in an activated state due to IL1B, and astrocytic AD EVs are enriched in ITGB1. This correlated with A β 42 and phosphoTau, and these EVs enhance neuronal uptake via integrin signaling. Thus, this study provides a featured framework and rich resource for analyses of EV functions in neurodegenerative diseases in a cell type-specific manner.\",\"PeriodicalId\":73008,\"journal\":{\"name\":\"Extracellular vesicles and circulating nucleic acids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracellular vesicles and circulating nucleic acids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/evcna.2022.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracellular vesicles and circulating nucleic acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/evcna.2022.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A report on ASIC2021: a conference on extracellular vesicle communication mechanisms.
AD. His group generated human induced pluripotent stem cells (hiPSCs) and differentiated them into neuronal, astrocytic, oligodendrocytic, and microglial cell types. Proteomic profiles of EVs from these differentiated iPSC cells contained cell-type specific markers: excitatory neurons (ATP1A3, NCAM1); astrocytes (LRP1, ITGA6); microglia-like cells (ITGAM, CD300A); and oligodendrocyte-like cells (LAMP2, FTH1). There were also 16 pan-EV marker candidates, including integrins and annexins. Cell type-specific EV proteins could also be found when comparing their data to CSF EV proteomic datasets, which also held true for brain-derived EVs. Correlation networks and pathway analyses identified proteins in each cell subset EVs with co-expression in AD. It was shown that astrocyte-specific EV (ADEV) markers were most significantly associated with AD pathology and cognitive impairment, thereby underscoring the role of ADEVs in AD progression. The hub protein from this module, integrin- β 1 (ITGB1), was elevated in ADEVs purified from total brain-derived EVs and associated with brain A β 42 and tau load in independent cohorts. From this, it was found that astrocytes are likely in an activated state due to IL1B, and astrocytic AD EVs are enriched in ITGB1. This correlated with A β 42 and phosphoTau, and these EVs enhance neuronal uptake via integrin signaling. Thus, this study provides a featured framework and rich resource for analyses of EV functions in neurodegenerative diseases in a cell type-specific manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信