用时间分辨傅立叶变换红外光谱法监测全长MsbA中ATP结合和ATP水解。

IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Daniel Mann, Kristin Labudda, Sophie Zimmermann, Kai Ulrich Vocke, Raphael Gasper, Carsten Kötting, Eckhard Hofmann
{"title":"用时间分辨傅立叶变换红外光谱法监测全长MsbA中ATP结合和ATP水解。","authors":"Daniel Mann,&nbsp;Kristin Labudda,&nbsp;Sophie Zimmermann,&nbsp;Kai Ulrich Vocke,&nbsp;Raphael Gasper,&nbsp;Carsten Kötting,&nbsp;Eckhard Hofmann","doi":"10.1515/hsz-2023-0122","DOIUrl":null,"url":null,"abstract":"<p><p>The essential <i>Escherichia coli</i> ATPase MsbA is a lipid flippase that serves as a prototype for multi drug resistant ABC transporters. Its physiological function is the transport of lipopolisaccharides to build up the outer membranes of Gram-negative bacteria. Although several structural and biochemical studies of MsbA have been conducted previously, a detailed picture of the dynamic processes that link ATP hydrolysis to allocrit transport remains elusive. We report here for the first time time-resolved Fourier transform infrared (FTIR) spectroscopic measurements of the ATP binding and ATP hydrolysis reaction of full-length MsbA and determined reaction rates at 288 K of <i>k</i> <sub>1</sub> = 0.49 ± 0.28 s<sup>-1</sup> and <i>k</i> <sub>2</sub> = 0.014 ± 0.003 s<sup>-1</sup>, respectively. We further verified these rates with photocaged NPE<i>cg</i>AppNHp where only nucleotide binding was observable and the negative mutant MsbA-H537A that showed slow hydrolysis (<i>k</i> <sub>2</sub> < 2 × 10<sup>-4</sup> s<sup>-1</sup>). Besides single turnover kinetics, FTIR measurements also deliver IR signatures of all educts, products and the protein. ADP remains protein-bound after ATP hydrolysis. In addition, the spectral changes observed for the two variants MsbA-S378A and MsbA-S482A correlated with the loss of hydrogen bonding to the γ-phosphate of ATP. This study paves the way for FTIR-spectroscopic investigations of allocrite transport in full-length MsbA.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"404 7","pages":"727-737"},"PeriodicalIF":2.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATP binding and ATP hydrolysis in full-length MsbA monitored via time-resolved Fourier transform infrared spectroscopy.\",\"authors\":\"Daniel Mann,&nbsp;Kristin Labudda,&nbsp;Sophie Zimmermann,&nbsp;Kai Ulrich Vocke,&nbsp;Raphael Gasper,&nbsp;Carsten Kötting,&nbsp;Eckhard Hofmann\",\"doi\":\"10.1515/hsz-2023-0122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The essential <i>Escherichia coli</i> ATPase MsbA is a lipid flippase that serves as a prototype for multi drug resistant ABC transporters. Its physiological function is the transport of lipopolisaccharides to build up the outer membranes of Gram-negative bacteria. Although several structural and biochemical studies of MsbA have been conducted previously, a detailed picture of the dynamic processes that link ATP hydrolysis to allocrit transport remains elusive. We report here for the first time time-resolved Fourier transform infrared (FTIR) spectroscopic measurements of the ATP binding and ATP hydrolysis reaction of full-length MsbA and determined reaction rates at 288 K of <i>k</i> <sub>1</sub> = 0.49 ± 0.28 s<sup>-1</sup> and <i>k</i> <sub>2</sub> = 0.014 ± 0.003 s<sup>-1</sup>, respectively. We further verified these rates with photocaged NPE<i>cg</i>AppNHp where only nucleotide binding was observable and the negative mutant MsbA-H537A that showed slow hydrolysis (<i>k</i> <sub>2</sub> < 2 × 10<sup>-4</sup> s<sup>-1</sup>). Besides single turnover kinetics, FTIR measurements also deliver IR signatures of all educts, products and the protein. ADP remains protein-bound after ATP hydrolysis. In addition, the spectral changes observed for the two variants MsbA-S378A and MsbA-S482A correlated with the loss of hydrogen bonding to the γ-phosphate of ATP. This study paves the way for FTIR-spectroscopic investigations of allocrite transport in full-length MsbA.</p>\",\"PeriodicalId\":8885,\"journal\":{\"name\":\"Biological Chemistry\",\"volume\":\"404 7\",\"pages\":\"727-737\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/hsz-2023-0122\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2023-0122","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

必不可少的大肠杆菌ATPase MsbA是一种脂质翻转酶,可作为多重耐药ABC转运体的原型。其生理功能是运输脂多糖,建立革兰氏阴性菌的外膜。尽管之前已经对MsbA进行了一些结构和生化研究,但ATP水解与分配转运之间的动态过程的详细图像仍然难以捉摸。本文首次报道了时间分辨傅立叶变换红外(FTIR)光谱测量全长MsbA的ATP结合和ATP水解反应,并测定了288 K (k1 = 0.49±0.28 s-1和k2 = 0.014±0.003 s-1)下的反应速率。我们进一步用光笼NPEcgAppNHp验证了这些速率,其中只有核苷酸结合可观察到,而阴性突变体MsbA-H537A水解缓慢(k 2 -4 s-1)。除了单次周转动力学外,FTIR测量还提供了所有产出物、产物和蛋白质的红外特征。ATP水解后ADP仍与蛋白质结合。此外,两个变体MsbA-S378A和MsbA-S482A的光谱变化与ATP的γ-磷酸氢键的损失有关。本研究为ftir光谱研究全长MsbA中异体输运铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ATP binding and ATP hydrolysis in full-length MsbA monitored via time-resolved Fourier transform infrared spectroscopy.

The essential Escherichia coli ATPase MsbA is a lipid flippase that serves as a prototype for multi drug resistant ABC transporters. Its physiological function is the transport of lipopolisaccharides to build up the outer membranes of Gram-negative bacteria. Although several structural and biochemical studies of MsbA have been conducted previously, a detailed picture of the dynamic processes that link ATP hydrolysis to allocrit transport remains elusive. We report here for the first time time-resolved Fourier transform infrared (FTIR) spectroscopic measurements of the ATP binding and ATP hydrolysis reaction of full-length MsbA and determined reaction rates at 288 K of k 1 = 0.49 ± 0.28 s-1 and k 2 = 0.014 ± 0.003 s-1, respectively. We further verified these rates with photocaged NPEcgAppNHp where only nucleotide binding was observable and the negative mutant MsbA-H537A that showed slow hydrolysis (k 2 < 2 × 10-4 s-1). Besides single turnover kinetics, FTIR measurements also deliver IR signatures of all educts, products and the protein. ADP remains protein-bound after ATP hydrolysis. In addition, the spectral changes observed for the two variants MsbA-S378A and MsbA-S482A correlated with the loss of hydrogen bonding to the γ-phosphate of ATP. This study paves the way for FTIR-spectroscopic investigations of allocrite transport in full-length MsbA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Chemistry
Biological Chemistry 生物-生化与分子生物学
CiteScore
7.20
自引率
0.00%
发文量
63
审稿时长
4-8 weeks
期刊介绍: Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信