{"title":"DNA损伤强度调控p53动力学特性的机制。","authors":"Aiqing Ma, Xianhua Dai","doi":"10.1142/S0219720023500117","DOIUrl":null,"url":null,"abstract":"<p><p>The P53 protein levels exhibit a series of pulses in response to DNA double-stranded breaks (DSBs). However, the mechanism regarding how damage strength regulates physical parameters of p53 pulses remains to be elucidated. This paper established two mathematical models translating the mechanism of p53 dynamics in response to DSBs; the two models can reproduce many results observed in the experiments. Based on the models, numerical analysis suggested that the interval between pulses increases as the damage strength decreases, and we proposed that the p53 dynamical system in response to DSBs is modulated by frequency. Next, we found that the ATM positive self-feedback can realize the system characteristic that the pulse amplitude is independent of the damage strength. In addition, the pulse interval is negatively correlated with apoptosis; the greater the damage strength, the smaller the pulse interval, the faster the p53 accumulation rate, and the cells are more susceptible to apoptosis. These findings advance our understanding of the mechanism of p53 dynamical response and give new insights for experiments to probe the dynamics of p53 signaling.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"21 3","pages":"2350011"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanism accounting for DNA damage strength modulation of p53 dynamical properties.\",\"authors\":\"Aiqing Ma, Xianhua Dai\",\"doi\":\"10.1142/S0219720023500117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The P53 protein levels exhibit a series of pulses in response to DNA double-stranded breaks (DSBs). However, the mechanism regarding how damage strength regulates physical parameters of p53 pulses remains to be elucidated. This paper established two mathematical models translating the mechanism of p53 dynamics in response to DSBs; the two models can reproduce many results observed in the experiments. Based on the models, numerical analysis suggested that the interval between pulses increases as the damage strength decreases, and we proposed that the p53 dynamical system in response to DSBs is modulated by frequency. Next, we found that the ATM positive self-feedback can realize the system characteristic that the pulse amplitude is independent of the damage strength. In addition, the pulse interval is negatively correlated with apoptosis; the greater the damage strength, the smaller the pulse interval, the faster the p53 accumulation rate, and the cells are more susceptible to apoptosis. These findings advance our understanding of the mechanism of p53 dynamical response and give new insights for experiments to probe the dynamics of p53 signaling.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"21 3\",\"pages\":\"2350011\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720023500117\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720023500117","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
The mechanism accounting for DNA damage strength modulation of p53 dynamical properties.
The P53 protein levels exhibit a series of pulses in response to DNA double-stranded breaks (DSBs). However, the mechanism regarding how damage strength regulates physical parameters of p53 pulses remains to be elucidated. This paper established two mathematical models translating the mechanism of p53 dynamics in response to DSBs; the two models can reproduce many results observed in the experiments. Based on the models, numerical analysis suggested that the interval between pulses increases as the damage strength decreases, and we proposed that the p53 dynamical system in response to DSBs is modulated by frequency. Next, we found that the ATM positive self-feedback can realize the system characteristic that the pulse amplitude is independent of the damage strength. In addition, the pulse interval is negatively correlated with apoptosis; the greater the damage strength, the smaller the pulse interval, the faster the p53 accumulation rate, and the cells are more susceptible to apoptosis. These findings advance our understanding of the mechanism of p53 dynamical response and give new insights for experiments to probe the dynamics of p53 signaling.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.