人一生中多部位皮层数据的协调性

Sahar Ahmad, Fang Nan, Ye Wu, Zhengwang Wu, Weili Lin, Li Wang, Gang Li, Di Wu, Pew-Thian Yap
{"title":"人一生中多部位皮层数据的协调性","authors":"Sahar Ahmad, Fang Nan, Ye Wu, Zhengwang Wu, Weili Lin, Li Wang, Gang Li, Di Wu, Pew-Thian Yap","doi":"10.1007/978-3-031-21014-3_23","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroimaging data harmonization has become a prerequisite in integrative data analytics for standardizing a wide variety of data collected from multiple studies and enabling interdisciplinary research. The lack of standardized image acquisition and computational procedures introduces non-biological variability and inconsistency in multi-site data, complicating downstream statistical analyses. Here, we propose a novel statistical technique to retrospectively harmonize multi-site cortical data collected longitudinally and cross-sectionally between birth and 100 years. We demonstrate that our method can effectively eliminate non-biological disparities from cortical thickness and myelination measurements, while preserving biological variation across the entire lifespan. Our harmonization method will foster large-scale population studies by providing comparable data required for investigating developmental and aging processes.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"13583 ","pages":"220-229"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134963/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harmonization of Multi-site Cortical Data Across the Human Lifespan.\",\"authors\":\"Sahar Ahmad, Fang Nan, Ye Wu, Zhengwang Wu, Weili Lin, Li Wang, Gang Li, Di Wu, Pew-Thian Yap\",\"doi\":\"10.1007/978-3-031-21014-3_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroimaging data harmonization has become a prerequisite in integrative data analytics for standardizing a wide variety of data collected from multiple studies and enabling interdisciplinary research. The lack of standardized image acquisition and computational procedures introduces non-biological variability and inconsistency in multi-site data, complicating downstream statistical analyses. Here, we propose a novel statistical technique to retrospectively harmonize multi-site cortical data collected longitudinally and cross-sectionally between birth and 100 years. We demonstrate that our method can effectively eliminate non-biological disparities from cortical thickness and myelination measurements, while preserving biological variation across the entire lifespan. Our harmonization method will foster large-scale population studies by providing comparable data required for investigating developmental and aging processes.</p>\",\"PeriodicalId\":74092,\"journal\":{\"name\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"volume\":\"13583 \",\"pages\":\"220-229\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134963/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-21014-3_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-21014-3_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经成像数据的统一已成为综合数据分析的先决条件,它能使从多项研究中收集的各种数据标准化,并促进跨学科研究。由于缺乏标准化的图像采集和计算程序,多研究地点数据中存在非生物变异性和不一致性,从而使下游统计分析复杂化。在此,我们提出了一种新的统计技术,用于回顾性地统一从出生到 100 岁之间纵向和横截面采集的多站点皮层数据。我们证明,我们的方法可以有效消除皮质厚度和髓鞘化测量中的非生物差异,同时保留整个生命周期的生物变异。我们的协调方法将为研究发育和衰老过程提供所需的可比数据,从而促进大规模人群研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonization of Multi-site Cortical Data Across the Human Lifespan.

Neuroimaging data harmonization has become a prerequisite in integrative data analytics for standardizing a wide variety of data collected from multiple studies and enabling interdisciplinary research. The lack of standardized image acquisition and computational procedures introduces non-biological variability and inconsistency in multi-site data, complicating downstream statistical analyses. Here, we propose a novel statistical technique to retrospectively harmonize multi-site cortical data collected longitudinally and cross-sectionally between birth and 100 years. We demonstrate that our method can effectively eliminate non-biological disparities from cortical thickness and myelination measurements, while preserving biological variation across the entire lifespan. Our harmonization method will foster large-scale population studies by providing comparable data required for investigating developmental and aging processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信