{"title":"整合噬菌体中离子结合蛋白的时空变异。","authors":"Hongliang Zou, Zizheng Yu, Zhijian Yin","doi":"10.1142/S0219720023500105","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies reported that ion binding proteins (IBPs) in phage play a key role in developing drugs to treat diseases caused by drug-resistant bacteria. Therefore, correct recognition of IBPs is an urgent task, which is beneficial for understanding their biological functions. To explore this issue, a new computational model was developed to identify IBPs in this study. First, we used the physicochemical (PC) property and Pearson's correlation coefficient (PCC) to denote protein sequences, and the temporal and spatial variabilities were employed to extract features. Next, a similarity network fusion algorithm was employed to capture the correlation characteristics between these two different kinds of features. Then, a feature selection method called F-score was utilized to remove the influence of redundant and irrelative information. Finally, these reserved features were fed into support vector machine (SVM) to discriminate IBPs from non-IBPs. Experimental results showed that the proposed method has significant improvement in the classification performance, as compared with the state-of-the-art approach. The Matlab codes and dataset used in this study are available at https://figshare.com/articles/online_resource/iIBP-TSV/21779567 for academic use.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"21 3","pages":"2350010"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating temporal and spatial variabilities for identifying ion binding proteins in phage.\",\"authors\":\"Hongliang Zou, Zizheng Yu, Zhijian Yin\",\"doi\":\"10.1142/S0219720023500105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies reported that ion binding proteins (IBPs) in phage play a key role in developing drugs to treat diseases caused by drug-resistant bacteria. Therefore, correct recognition of IBPs is an urgent task, which is beneficial for understanding their biological functions. To explore this issue, a new computational model was developed to identify IBPs in this study. First, we used the physicochemical (PC) property and Pearson's correlation coefficient (PCC) to denote protein sequences, and the temporal and spatial variabilities were employed to extract features. Next, a similarity network fusion algorithm was employed to capture the correlation characteristics between these two different kinds of features. Then, a feature selection method called F-score was utilized to remove the influence of redundant and irrelative information. Finally, these reserved features were fed into support vector machine (SVM) to discriminate IBPs from non-IBPs. Experimental results showed that the proposed method has significant improvement in the classification performance, as compared with the state-of-the-art approach. The Matlab codes and dataset used in this study are available at https://figshare.com/articles/online_resource/iIBP-TSV/21779567 for academic use.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"21 3\",\"pages\":\"2350010\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720023500105\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720023500105","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Integrating temporal and spatial variabilities for identifying ion binding proteins in phage.
Recent studies reported that ion binding proteins (IBPs) in phage play a key role in developing drugs to treat diseases caused by drug-resistant bacteria. Therefore, correct recognition of IBPs is an urgent task, which is beneficial for understanding their biological functions. To explore this issue, a new computational model was developed to identify IBPs in this study. First, we used the physicochemical (PC) property and Pearson's correlation coefficient (PCC) to denote protein sequences, and the temporal and spatial variabilities were employed to extract features. Next, a similarity network fusion algorithm was employed to capture the correlation characteristics between these two different kinds of features. Then, a feature selection method called F-score was utilized to remove the influence of redundant and irrelative information. Finally, these reserved features were fed into support vector machine (SVM) to discriminate IBPs from non-IBPs. Experimental results showed that the proposed method has significant improvement in the classification performance, as compared with the state-of-the-art approach. The Matlab codes and dataset used in this study are available at https://figshare.com/articles/online_resource/iIBP-TSV/21779567 for academic use.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.