树状结构多任务模型架构推荐系统。

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lijun Zhang, Xiao Liu, Hui Guan
{"title":"树状结构多任务模型架构推荐系统。","authors":"Lijun Zhang, Xiao Liu, Hui Guan","doi":"10.1109/TNNLS.2023.3288537","DOIUrl":null,"url":null,"abstract":"<p><p>Neural networks with branched architectures, namely, tree-structured models, have been employed to jointly tackle multiple vision tasks in the context of multitask learning (MTL). Such tree-structured networks typically start with a number of shared layers, after which different tasks branch out into their own sequence of layers. Hence, the major challenge is to determine where to branch out for each task given a backbone model to optimize for both task accuracy and computation efficiency. To address the challenge, this article proposes a recommendation system that, given a set of tasks and a convolutional neural network-based backbone model, automatically suggests tree-structured multitask architectures that could achieve a high task performance while meeting a user-specified computation budget without performing model training. Extensive evaluations on popular MTL benchmarks show that the recommended architectures could achieve competitive task accuracy and computation efficiency compared with state-of-the-art MTL methods. Our tree-structured multitask model recommender is open-sourced and available at https://github.com/zhanglijun95/TreeMTL.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":null,"pages":null},"PeriodicalIF":10.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tree-Structured Multitask Model Architectures Recommendation System.\",\"authors\":\"Lijun Zhang, Xiao Liu, Hui Guan\",\"doi\":\"10.1109/TNNLS.2023.3288537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural networks with branched architectures, namely, tree-structured models, have been employed to jointly tackle multiple vision tasks in the context of multitask learning (MTL). Such tree-structured networks typically start with a number of shared layers, after which different tasks branch out into their own sequence of layers. Hence, the major challenge is to determine where to branch out for each task given a backbone model to optimize for both task accuracy and computation efficiency. To address the challenge, this article proposes a recommendation system that, given a set of tasks and a convolutional neural network-based backbone model, automatically suggests tree-structured multitask architectures that could achieve a high task performance while meeting a user-specified computation budget without performing model training. Extensive evaluations on popular MTL benchmarks show that the recommended architectures could achieve competitive task accuracy and computation efficiency compared with state-of-the-art MTL methods. Our tree-structured multitask model recommender is open-sourced and available at https://github.com/zhanglijun95/TreeMTL.</p>\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TNNLS.2023.3288537\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3288537","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在多任务学习(MTL)的背景下,具有分支架构的神经网络(即树状结构模型)已被用于联合处理多个视觉任务。这种树状结构网络通常从一些共享层开始,之后不同的任务会分支到各自的层序列中。因此,面临的主要挑战是,如何根据骨干模型确定每个任务的分支位置,以优化任务准确性和计算效率。为了应对这一挑战,本文提出了一种推荐系统,在给定一组任务和基于卷积神经网络的骨干模型的情况下,自动推荐树状结构的多任务架构,这种架构可以在满足用户指定计算预算的同时实现较高的任务性能,而无需进行模型训练。在流行的 MTL 基准上进行的广泛评估表明,与最先进的 MTL 方法相比,推荐的架构在任务准确性和计算效率方面都具有竞争力。我们的树状结构多任务模型推荐器已开源,可在 https://github.com/zhanglijun95/TreeMTL 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Tree-Structured Multitask Model Architectures Recommendation System.

Neural networks with branched architectures, namely, tree-structured models, have been employed to jointly tackle multiple vision tasks in the context of multitask learning (MTL). Such tree-structured networks typically start with a number of shared layers, after which different tasks branch out into their own sequence of layers. Hence, the major challenge is to determine where to branch out for each task given a backbone model to optimize for both task accuracy and computation efficiency. To address the challenge, this article proposes a recommendation system that, given a set of tasks and a convolutional neural network-based backbone model, automatically suggests tree-structured multitask architectures that could achieve a high task performance while meeting a user-specified computation budget without performing model training. Extensive evaluations on popular MTL benchmarks show that the recommended architectures could achieve competitive task accuracy and computation efficiency compared with state-of-the-art MTL methods. Our tree-structured multitask model recommender is open-sourced and available at https://github.com/zhanglijun95/TreeMTL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信