由不同的抑制性神经元亚型控制的听觉皮层中声音的局部表示与分布表示。

Melanie Tobin, Janaki Sheth, Katherine C Wood, Erin K Michel, Maria N Geffen
{"title":"由不同的抑制性神经元亚型控制的听觉皮层中声音的局部表示与分布表示。","authors":"Melanie Tobin, Janaki Sheth, Katherine C Wood, Erin K Michel, Maria N Geffen","doi":"10.1101/2023.02.01.526470","DOIUrl":null,"url":null,"abstract":"<p><p>Cortical circuits contain multiple types of inhibitory neurons which shape how information is processed within neuronal networks. Here, we asked whether somatostatin-expressing (SST) and vasoactive intestinal peptide-expressing (VIP) inhibitory neurons have distinct effects on population neuronal responses to noise bursts of varying intensities. We optogenetically stimulated SST or VIP neurons while simultaneously measuring the calcium responses of populations of hundreds of neurons in the auditory cortex of male and female awake, head-fixed mice to sounds. Upon SST neuronal activation, noise bursts representations became more discrete for different intensity levels, relying on cell identity rather than strength. By contrast, upon VIP neuronal activation, noise bursts of different intensity level activated overlapping neuronal populations, albeit at different response strengths. At the single-cell level, SST and VIP neuronal activation differentially modulated the response-level curves of monotonic and nonmonotonic neurons. SST neuronal activation effects were consistent with a shift of the neuronal population responses toward a more localist code with different cells responding to sounds of different intensity. By contrast, VIP neuronal activation shifted responses towards a more distributed code, in which sounds of different intensity level are encoded in the relative response of similar populations of cells. These results delineate how distinct inhibitory neurons in the auditory cortex dynamically control cortical population codes. Different inhibitory neuronal populations may be recruited under different behavioral demands, depending on whether categorical or invariant representations are advantageous for the task.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/55/40/nihpp-2023.02.01.526470v2.PMC9915672.pdf","citationCount":"0","resultStr":"{\"title\":\"\\\"Distinct inhibitory neurons differently shape neuronal codes for sound intensity in the auditory cortex\\\".\",\"authors\":\"Melanie Tobin, Janaki Sheth, Katherine C Wood, Erin K Michel, Maria N Geffen\",\"doi\":\"10.1101/2023.02.01.526470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cortical circuits contain multiple types of inhibitory neurons which shape how information is processed within neuronal networks. Here, we asked whether somatostatin-expressing (SST) and vasoactive intestinal peptide-expressing (VIP) inhibitory neurons have distinct effects on population neuronal responses to noise bursts of varying intensities. We optogenetically stimulated SST or VIP neurons while simultaneously measuring the calcium responses of populations of hundreds of neurons in the auditory cortex of male and female awake, head-fixed mice to sounds. Upon SST neuronal activation, noise bursts representations became more discrete for different intensity levels, relying on cell identity rather than strength. By contrast, upon VIP neuronal activation, noise bursts of different intensity level activated overlapping neuronal populations, albeit at different response strengths. At the single-cell level, SST and VIP neuronal activation differentially modulated the response-level curves of monotonic and nonmonotonic neurons. SST neuronal activation effects were consistent with a shift of the neuronal population responses toward a more localist code with different cells responding to sounds of different intensity. By contrast, VIP neuronal activation shifted responses towards a more distributed code, in which sounds of different intensity level are encoded in the relative response of similar populations of cells. These results delineate how distinct inhibitory neurons in the auditory cortex dynamically control cortical population codes. Different inhibitory neuronal populations may be recruited under different behavioral demands, depending on whether categorical or invariant representations are advantageous for the task.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/55/40/nihpp-2023.02.01.526470v2.PMC9915672.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.02.01.526470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.02.01.526470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

皮层神经元群体可以使用多种代码来表示信息,每种代码都有不同的优势和权衡。听觉皮层通过稀疏编码来表示声音,稀疏编码位于不同细胞对不同声音做出反应的局部表示和分布式表示之间的连续体上,在分布式表示中,每个声音都被编码在群体中每个细胞的相对响应中。能够沿着这个轴动态地移动神经元代码可能有助于完成各种需要分类或不变表示的任务。皮层回路包含多种类型的抑制性神经元,这些神经元决定了神经元网络中信息的处理方式。在这里,我们询问了表达生长抑素(SST)和表达血管活性肠肽(VIP)的抑制性神经元是否对群体神经元编码有不同的影响,从而在分布和局部表征之间差异地改变声音的编码。我们刺激光遗传学SST或VIP神经元,同时测量数百个神经元群体对不同声压级声音的反应。SST激活使神经元群体反应向更本地化的代码转移,而VIP激活使其向更分布式的代码转移。SST激活后,声音表征变得更加离散,依赖于细胞身份而非强度。相反,在VIP激活时,不同的声音以不同的速率激活重叠的群体。这些变化是通过调节单调和非单调神经元的反应水平曲线在单细胞水平上实现的。这些结果表明,听觉皮层中不同的抑制性神经元在动态控制皮层群体代码方面具有新的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

"Distinct inhibitory neurons differently shape neuronal codes for sound intensity in the auditory cortex".

"Distinct inhibitory neurons differently shape neuronal codes for sound intensity in the auditory cortex".

"Distinct inhibitory neurons differently shape neuronal codes for sound intensity in the auditory cortex".

"Distinct inhibitory neurons differently shape neuronal codes for sound intensity in the auditory cortex".

Cortical circuits contain multiple types of inhibitory neurons which shape how information is processed within neuronal networks. Here, we asked whether somatostatin-expressing (SST) and vasoactive intestinal peptide-expressing (VIP) inhibitory neurons have distinct effects on population neuronal responses to noise bursts of varying intensities. We optogenetically stimulated SST or VIP neurons while simultaneously measuring the calcium responses of populations of hundreds of neurons in the auditory cortex of male and female awake, head-fixed mice to sounds. Upon SST neuronal activation, noise bursts representations became more discrete for different intensity levels, relying on cell identity rather than strength. By contrast, upon VIP neuronal activation, noise bursts of different intensity level activated overlapping neuronal populations, albeit at different response strengths. At the single-cell level, SST and VIP neuronal activation differentially modulated the response-level curves of monotonic and nonmonotonic neurons. SST neuronal activation effects were consistent with a shift of the neuronal population responses toward a more localist code with different cells responding to sounds of different intensity. By contrast, VIP neuronal activation shifted responses towards a more distributed code, in which sounds of different intensity level are encoded in the relative response of similar populations of cells. These results delineate how distinct inhibitory neurons in the auditory cortex dynamically control cortical population codes. Different inhibitory neuronal populations may be recruited under different behavioral demands, depending on whether categorical or invariant representations are advantageous for the task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信