M Krzyzankova, M Krasna, J Prodelalova, P Vasickova
{"title":"采用钯化合物预处理后实时荧光定量PCR方法对包膜DNA病毒进行感染性鉴定。","authors":"M Krzyzankova, M Krasna, J Prodelalova, P Vasickova","doi":"10.24425/pjvs.2023.145024","DOIUrl":null,"url":null,"abstract":"<p><p>Cultivation-based assays represent the gold standard for the assessment of virus infectivity; however, they are time-consuming and not suitable for every virus type. Pre-treatment with platinum (Pt) compounds followed by real-time PCR has been shown to discriminate between infectious and non-infectious RNA viruses. This study examined the effect of Pt and palladium (Pd) compounds on enveloped DNA viruses, paying attention to two significant pathogens of livestock - bovine herpesvirus-1 (BoHV-1) and African swine fever virus (ASFV). Native or heat-treated BoHV-1 suspension was incubated with the spectrum of Pt/Pd compounds. Bis(benzonitrile)palladium(II) dichloride (BB-PdCl <sub>2</sub>) and dichloro(1,5-cyclooctadiene) palladium(II) (PdCl <sub>2</sub>-COD) produced the highest differences found between native and heat- -treated viruses. Optimized pre-treatment conditions (1 mM of Pd compound, 15 min, 4°C) were applied on both virus genera and the heat inactivation profiles were assessed. A significant decrease in the detected quantity of BoHV-1 DNA and ASFV DNA after heat-treatment (60°C and 95°C) and consequent incubation with Pd compounds was observed. BB-PdCl <sub>2</sub> and PdCl <sub>2</sub>-COD could help to distinguish between infectious and non-infectious enveloped DNA viruses such as BoHV-1 or ASFV.</p>","PeriodicalId":20366,"journal":{"name":"Polish journal of veterinary sciences","volume":"26 2","pages":"211-221"},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for the infectivity discrimination of enveloped DNA viruses using palladium compounds pre-treatment followed by real-time PCR.\",\"authors\":\"M Krzyzankova, M Krasna, J Prodelalova, P Vasickova\",\"doi\":\"10.24425/pjvs.2023.145024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cultivation-based assays represent the gold standard for the assessment of virus infectivity; however, they are time-consuming and not suitable for every virus type. Pre-treatment with platinum (Pt) compounds followed by real-time PCR has been shown to discriminate between infectious and non-infectious RNA viruses. This study examined the effect of Pt and palladium (Pd) compounds on enveloped DNA viruses, paying attention to two significant pathogens of livestock - bovine herpesvirus-1 (BoHV-1) and African swine fever virus (ASFV). Native or heat-treated BoHV-1 suspension was incubated with the spectrum of Pt/Pd compounds. Bis(benzonitrile)palladium(II) dichloride (BB-PdCl <sub>2</sub>) and dichloro(1,5-cyclooctadiene) palladium(II) (PdCl <sub>2</sub>-COD) produced the highest differences found between native and heat- -treated viruses. Optimized pre-treatment conditions (1 mM of Pd compound, 15 min, 4°C) were applied on both virus genera and the heat inactivation profiles were assessed. A significant decrease in the detected quantity of BoHV-1 DNA and ASFV DNA after heat-treatment (60°C and 95°C) and consequent incubation with Pd compounds was observed. BB-PdCl <sub>2</sub> and PdCl <sub>2</sub>-COD could help to distinguish between infectious and non-infectious enveloped DNA viruses such as BoHV-1 or ASFV.</p>\",\"PeriodicalId\":20366,\"journal\":{\"name\":\"Polish journal of veterinary sciences\",\"volume\":\"26 2\",\"pages\":\"211-221\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish journal of veterinary sciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.24425/pjvs.2023.145024\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish journal of veterinary sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.24425/pjvs.2023.145024","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
A method for the infectivity discrimination of enveloped DNA viruses using palladium compounds pre-treatment followed by real-time PCR.
Cultivation-based assays represent the gold standard for the assessment of virus infectivity; however, they are time-consuming and not suitable for every virus type. Pre-treatment with platinum (Pt) compounds followed by real-time PCR has been shown to discriminate between infectious and non-infectious RNA viruses. This study examined the effect of Pt and palladium (Pd) compounds on enveloped DNA viruses, paying attention to two significant pathogens of livestock - bovine herpesvirus-1 (BoHV-1) and African swine fever virus (ASFV). Native or heat-treated BoHV-1 suspension was incubated with the spectrum of Pt/Pd compounds. Bis(benzonitrile)palladium(II) dichloride (BB-PdCl 2) and dichloro(1,5-cyclooctadiene) palladium(II) (PdCl 2-COD) produced the highest differences found between native and heat- -treated viruses. Optimized pre-treatment conditions (1 mM of Pd compound, 15 min, 4°C) were applied on both virus genera and the heat inactivation profiles were assessed. A significant decrease in the detected quantity of BoHV-1 DNA and ASFV DNA after heat-treatment (60°C and 95°C) and consequent incubation with Pd compounds was observed. BB-PdCl 2 and PdCl 2-COD could help to distinguish between infectious and non-infectious enveloped DNA viruses such as BoHV-1 or ASFV.
期刊介绍:
Polish Journal of Veterinary Sciences accepts short communications, original papers and review articles from the field of, widely understood, veterinary sciences - basic, clinical, environmental, animal-origin food hygiene, feed hygiene, etc.