{"title":"可穿戴脑电图系统的微型化:记录硬件和数据处理。","authors":"Minjae Kim, Seungjae Yoo, Chul Kim","doi":"10.1007/s13534-022-00232-0","DOIUrl":null,"url":null,"abstract":"<p><p>As more people desire at-home diagnosis and treatment for their health improvement, healthcare devices have become more wearable, comfortable, and easy to use. In that sense, the miniaturization of electroencephalography (EEG) systems is a major challenge for developing daily-life healthcare devices. Recently, because of the intertwined relationship between EEG recording and processing, co-research of EEG recording hardware and data processing has been emphasized for whole-in-one miniaturized EEG systems. This paper introduces miniaturization techniques in analog-front-end hardware and processing algorithms for such EEG systems. To miniaturize EEG recording hardware, various types of compact electrodes and mm-sized integrated circuits (IC) techniques including artifact rejection are studied to record accurate EEG signals in a much smaller manner. Active electrode and in-ear EEG technologies are also researched to make small-form-factor EEG measurement structures. Furthermore, miniaturization techniques for EEG processing are discussed including channel selection techniques that reduce the number of required electrode channel and hardware implementation of processing algorithms that simplify the EEG processing stage.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"12 3","pages":"239-250"},"PeriodicalIF":3.2000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168644/pdf/","citationCount":"0","resultStr":"{\"title\":\"Miniaturization for wearable EEG systems: recording hardware and data processing.\",\"authors\":\"Minjae Kim, Seungjae Yoo, Chul Kim\",\"doi\":\"10.1007/s13534-022-00232-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As more people desire at-home diagnosis and treatment for their health improvement, healthcare devices have become more wearable, comfortable, and easy to use. In that sense, the miniaturization of electroencephalography (EEG) systems is a major challenge for developing daily-life healthcare devices. Recently, because of the intertwined relationship between EEG recording and processing, co-research of EEG recording hardware and data processing has been emphasized for whole-in-one miniaturized EEG systems. This paper introduces miniaturization techniques in analog-front-end hardware and processing algorithms for such EEG systems. To miniaturize EEG recording hardware, various types of compact electrodes and mm-sized integrated circuits (IC) techniques including artifact rejection are studied to record accurate EEG signals in a much smaller manner. Active electrode and in-ear EEG technologies are also researched to make small-form-factor EEG measurement structures. Furthermore, miniaturization techniques for EEG processing are discussed including channel selection techniques that reduce the number of required electrode channel and hardware implementation of processing algorithms that simplify the EEG processing stage.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"12 3\",\"pages\":\"239-250\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168644/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-022-00232-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-022-00232-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Miniaturization for wearable EEG systems: recording hardware and data processing.
As more people desire at-home diagnosis and treatment for their health improvement, healthcare devices have become more wearable, comfortable, and easy to use. In that sense, the miniaturization of electroencephalography (EEG) systems is a major challenge for developing daily-life healthcare devices. Recently, because of the intertwined relationship between EEG recording and processing, co-research of EEG recording hardware and data processing has been emphasized for whole-in-one miniaturized EEG systems. This paper introduces miniaturization techniques in analog-front-end hardware and processing algorithms for such EEG systems. To miniaturize EEG recording hardware, various types of compact electrodes and mm-sized integrated circuits (IC) techniques including artifact rejection are studied to record accurate EEG signals in a much smaller manner. Active electrode and in-ear EEG technologies are also researched to make small-form-factor EEG measurement structures. Furthermore, miniaturization techniques for EEG processing are discussed including channel selection techniques that reduce the number of required electrode channel and hardware implementation of processing algorithms that simplify the EEG processing stage.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.