马斯喀特问题的稳态解。

Omar Sánchez
{"title":"马斯喀特问题的稳态解。","authors":"Omar Sánchez","doi":"10.1007/s13348-021-00348-z","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we study the existence of stationary solutions for the Muskat problem with a large surface tension coefficient. Ehrnstrom, Escher and Matioc studied in Mats Ehrnström (Methods Appl Anal 20:33-46, 2013) that there exists solutions to this problem for surface tensions below a finite value. In these notes we go beyond this value considering large surface tension. Also by numerical simulation we show some examples that explains the behavior of solutions.</p>","PeriodicalId":72636,"journal":{"name":"Collectanea mathematica (Barcelona, Spain)","volume":"74 2","pages":"313-321"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124092/pdf/","citationCount":"0","resultStr":"{\"title\":\"Steady-state solutions for the Muskat problem.\",\"authors\":\"Omar Sánchez\",\"doi\":\"10.1007/s13348-021-00348-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we study the existence of stationary solutions for the Muskat problem with a large surface tension coefficient. Ehrnstrom, Escher and Matioc studied in Mats Ehrnström (Methods Appl Anal 20:33-46, 2013) that there exists solutions to this problem for surface tensions below a finite value. In these notes we go beyond this value considering large surface tension. Also by numerical simulation we show some examples that explains the behavior of solutions.</p>\",\"PeriodicalId\":72636,\"journal\":{\"name\":\"Collectanea mathematica (Barcelona, Spain)\",\"volume\":\"74 2\",\"pages\":\"313-321\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124092/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collectanea mathematica (Barcelona, Spain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13348-021-00348-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea mathematica (Barcelona, Spain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13348-021-00348-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有大表面张力系数的Muskat问题的平稳解的存在性。Ehrnstrom, Escher和Matioc在Mats Ehrnström (Methods Appl Anal 20:33-46, 2013)中研究,对于低于有限值的表面张力,存在解决此问题的方法。在这些笔记中,考虑到大的表面张力,我们超过了这个值。我们还通过数值模拟给出了一些解释解的行为的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Steady-state solutions for the Muskat problem.

Steady-state solutions for the Muskat problem.

Steady-state solutions for the Muskat problem.

Steady-state solutions for the Muskat problem.

In this paper we study the existence of stationary solutions for the Muskat problem with a large surface tension coefficient. Ehrnstrom, Escher and Matioc studied in Mats Ehrnström (Methods Appl Anal 20:33-46, 2013) that there exists solutions to this problem for surface tensions below a finite value. In these notes we go beyond this value considering large surface tension. Also by numerical simulation we show some examples that explains the behavior of solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信