非线性期望模型中的实时变点检测。

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2023-03-30 DOI:10.1007/s00184-023-00904-6
Gabriela Ciuperca, Matúš Maciak, Michal Pešta
{"title":"非线性期望模型中的实时变点检测。","authors":"Gabriela Ciuperca,&nbsp;Matúš Maciak,&nbsp;Michal Pešta","doi":"10.1007/s00184-023-00904-6","DOIUrl":null,"url":null,"abstract":"<p><p>An online changepoint detection procedure based on conditional expectiles is introduced. The key contribution is threefold: nonlinearity of the underlying model improves the overall flexibility while a parametric form of the unknown regression function preserves a simple and straightforward interpretation; The conditional expectiles, well-known in econometrics for being the only coherent and elicitable risk measure, introduce additional robustness-especially with respect to asymmetric error distributions common in various types of data; The proposed statistical test is proved to be consistent and the distribution under the null hypothesis does not depend on the functional form of the underlying model nor the unknown parameters. Empirical properties of the proposed real-time changepoint detection test are investigated in a simulation study and a practical applicability is illustrated using the Covid-19 prevalence data from Prague.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062282/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-time changepoint detection in a nonlinear expectile model.\",\"authors\":\"Gabriela Ciuperca,&nbsp;Matúš Maciak,&nbsp;Michal Pešta\",\"doi\":\"10.1007/s00184-023-00904-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An online changepoint detection procedure based on conditional expectiles is introduced. The key contribution is threefold: nonlinearity of the underlying model improves the overall flexibility while a parametric form of the unknown regression function preserves a simple and straightforward interpretation; The conditional expectiles, well-known in econometrics for being the only coherent and elicitable risk measure, introduce additional robustness-especially with respect to asymmetric error distributions common in various types of data; The proposed statistical test is proved to be consistent and the distribution under the null hypothesis does not depend on the functional form of the underlying model nor the unknown parameters. Empirical properties of the proposed real-time changepoint detection test are investigated in a simulation study and a practical applicability is illustrated using the Covid-19 prevalence data from Prague.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-023-00904-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00904-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种基于条件期望值的在线变化点检测方法。关键贡献有三方面:基础模型的非线性提高了整体灵活性,而未知回归函数的参数形式保持了简单明了的解释;在计量经济学中,条件期望值是唯一连贯和可引发的风险度量,它引入了额外的稳健性,尤其是在各种类型的数据中常见的不对称误差分布方面;所提出的统计检验被证明是一致的,并且在零假设下的分布既不取决于基础模型的函数形式,也不取决于未知参数。在模拟研究中研究了所提出的实时变化点检测测试的经验特性,并使用布拉格的新冠肺炎流行率数据说明了其实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Real-time changepoint detection in a nonlinear expectile model.

Real-time changepoint detection in a nonlinear expectile model.

Real-time changepoint detection in a nonlinear expectile model.

Real-time changepoint detection in a nonlinear expectile model.

An online changepoint detection procedure based on conditional expectiles is introduced. The key contribution is threefold: nonlinearity of the underlying model improves the overall flexibility while a parametric form of the unknown regression function preserves a simple and straightforward interpretation; The conditional expectiles, well-known in econometrics for being the only coherent and elicitable risk measure, introduce additional robustness-especially with respect to asymmetric error distributions common in various types of data; The proposed statistical test is proved to be consistent and the distribution under the null hypothesis does not depend on the functional form of the underlying model nor the unknown parameters. Empirical properties of the proposed real-time changepoint detection test are investigated in a simulation study and a practical applicability is illustrated using the Covid-19 prevalence data from Prague.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信