{"title":"区块链为医疗智能手机网络中的信任管理提供了安全高效的数据共享方案。","authors":"Rati Bhan, Rajendra Pamula, Parvez Faruki, Jyoti Gajrani","doi":"10.1007/s11227-023-05272-6","DOIUrl":null,"url":null,"abstract":"<p><p>The Internet of Medical Things (IoMT) is an extended genre of the Internet of Things (IoT) where the <i>Things</i> collaborate to provide remote patient health monitoring, also known as the Internet of Health (IoH). Smartphones and IoMTs are expected to maintain secure and trusted confidential patient record exchange while managing the patient remotely. Healthcare organizations deploy Healthcare Smartphone Networks (HSN) for personal patient data collection and sharing among smartphone users and IoMT nodes. However, attackers gain access to confidential patient data via infected IoMT nodes on the HSN. Additionally, attackers can compromise the entire network via malicious nodes. This article proposes a Hyperledger blockchain-based technique to identify compromised IoMT nodes and safeguard sensitive patient records. Furthermore, the paper presents a Clustered Hierarchical Trust Management System (CHTMS) to block malicious nodes. In addition, the proposal employs Elliptic Curve Cryptography (ECC) to protect sensitive health records and is resilient against Denial-Of-Service (DOS) attacks. Finally, the evaluation results show that integrating blockchains into the HSN system improved detection performance compared to the existing state of the art. Therefore, the simulation results indicate better security and reliability when compared to conventional databases.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":" ","pages":"1-42"},"PeriodicalIF":2.5000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131528/pdf/","citationCount":"2","resultStr":"{\"title\":\"Blockchain-enabled secure and efficient data sharing scheme for trust management in healthcare smartphone network.\",\"authors\":\"Rati Bhan, Rajendra Pamula, Parvez Faruki, Jyoti Gajrani\",\"doi\":\"10.1007/s11227-023-05272-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Internet of Medical Things (IoMT) is an extended genre of the Internet of Things (IoT) where the <i>Things</i> collaborate to provide remote patient health monitoring, also known as the Internet of Health (IoH). Smartphones and IoMTs are expected to maintain secure and trusted confidential patient record exchange while managing the patient remotely. Healthcare organizations deploy Healthcare Smartphone Networks (HSN) for personal patient data collection and sharing among smartphone users and IoMT nodes. However, attackers gain access to confidential patient data via infected IoMT nodes on the HSN. Additionally, attackers can compromise the entire network via malicious nodes. This article proposes a Hyperledger blockchain-based technique to identify compromised IoMT nodes and safeguard sensitive patient records. Furthermore, the paper presents a Clustered Hierarchical Trust Management System (CHTMS) to block malicious nodes. In addition, the proposal employs Elliptic Curve Cryptography (ECC) to protect sensitive health records and is resilient against Denial-Of-Service (DOS) attacks. Finally, the evaluation results show that integrating blockchains into the HSN system improved detection performance compared to the existing state of the art. Therefore, the simulation results indicate better security and reliability when compared to conventional databases.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\" \",\"pages\":\"1-42\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131528/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-023-05272-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-023-05272-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Blockchain-enabled secure and efficient data sharing scheme for trust management in healthcare smartphone network.
The Internet of Medical Things (IoMT) is an extended genre of the Internet of Things (IoT) where the Things collaborate to provide remote patient health monitoring, also known as the Internet of Health (IoH). Smartphones and IoMTs are expected to maintain secure and trusted confidential patient record exchange while managing the patient remotely. Healthcare organizations deploy Healthcare Smartphone Networks (HSN) for personal patient data collection and sharing among smartphone users and IoMT nodes. However, attackers gain access to confidential patient data via infected IoMT nodes on the HSN. Additionally, attackers can compromise the entire network via malicious nodes. This article proposes a Hyperledger blockchain-based technique to identify compromised IoMT nodes and safeguard sensitive patient records. Furthermore, the paper presents a Clustered Hierarchical Trust Management System (CHTMS) to block malicious nodes. In addition, the proposal employs Elliptic Curve Cryptography (ECC) to protect sensitive health records and is resilient against Denial-Of-Service (DOS) attacks. Finally, the evaluation results show that integrating blockchains into the HSN system improved detection performance compared to the existing state of the art. Therefore, the simulation results indicate better security and reliability when compared to conventional databases.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.