Tomasz M. Rutkowski , Rafal Zdunek , Andrzej Cichocki
{"title":"支持非负矩阵分解的时频域多通道脑电活动模式分析","authors":"Tomasz M. Rutkowski , Rafal Zdunek , Andrzej Cichocki","doi":"10.1016/j.ics.2006.11.013","DOIUrl":null,"url":null,"abstract":"<div><p>A novel approach combining a time–frequency representation of brain activity in the form of recorded EEG signals together with nonnegative matrix factorization (NMF) post-processing section in brain computer interface<span> (BCI) training paradigm is presented. Such a combination of two emerging signal analysis techniques enables us to find and enhance very small oscillations related to presented visual stimuli. Presented results confirm validity of the chosen approach.</span></p></div>","PeriodicalId":84918,"journal":{"name":"International congress series","volume":"1301 ","pages":"Pages 266-269"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ics.2006.11.013","citationCount":"35","resultStr":"{\"title\":\"Multichannel EEG brain activity pattern analysis in time–frequency domain with nonnegative matrix factorization support\",\"authors\":\"Tomasz M. Rutkowski , Rafal Zdunek , Andrzej Cichocki\",\"doi\":\"10.1016/j.ics.2006.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel approach combining a time–frequency representation of brain activity in the form of recorded EEG signals together with nonnegative matrix factorization (NMF) post-processing section in brain computer interface<span> (BCI) training paradigm is presented. Such a combination of two emerging signal analysis techniques enables us to find and enhance very small oscillations related to presented visual stimuli. Presented results confirm validity of the chosen approach.</span></p></div>\",\"PeriodicalId\":84918,\"journal\":{\"name\":\"International congress series\",\"volume\":\"1301 \",\"pages\":\"Pages 266-269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ics.2006.11.013\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International congress series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0531513106006388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International congress series","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0531513106006388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multichannel EEG brain activity pattern analysis in time–frequency domain with nonnegative matrix factorization support
A novel approach combining a time–frequency representation of brain activity in the form of recorded EEG signals together with nonnegative matrix factorization (NMF) post-processing section in brain computer interface (BCI) training paradigm is presented. Such a combination of two emerging signal analysis techniques enables us to find and enhance very small oscillations related to presented visual stimuli. Presented results confirm validity of the chosen approach.