Darian T Carroll, Alexa M Sassin, Kjersti M Aagaard, Maureen Gannon
{"title":"子宫内二甲双胍对发育的影响","authors":"Darian T Carroll, Alexa M Sassin, Kjersti M Aagaard, Maureen Gannon","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, the intrauterine environment influences fetal programming and development, affecting offspring disease susceptibility in adulthood. In recent years, therapeutic use of the Type 2 diabetes drug metformin has expanded to the treatment of pre-diabetes, polycystic ovarian syndrome, and gestational diabetes. Because metformin both undergoes renal excretion and binds to receptors on the placenta, the fetus receives equivalent maternal dosing. Although no teratogenic nor short-term harmful fetal impact of metformin is known to occur, the effects of metformin exposure on longer-range offspring development have not yet been fully elucidated. This review encapsulates the (albeit limited) existing knowledge regarding the potential longer-term impact of intrauterine metformin exposure on the development of key organs including the liver, central nervous system, heart, gut, and endocrine pancreas in animal models and humans. We discuss molecular and cellular mechanisms that would be altered in response to treatment and describe the potential consequences of these developmental changes on postnatal health. Further studies regarding the influence of metformin exposure on fetal programming and adult metabolic health will provide necessary insight to its long-term risks, benefits, and limitations in order to guide decisions for use of metformin during pregnancy.</p>","PeriodicalId":75257,"journal":{"name":"Trends in developmental biology","volume":"14 ","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802655/pdf/nihms-1858967.pdf","citationCount":"0","resultStr":"{\"title\":\"Developmental effects of <i>in utero</i> metformin exposure.\",\"authors\":\"Darian T Carroll, Alexa M Sassin, Kjersti M Aagaard, Maureen Gannon\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, the intrauterine environment influences fetal programming and development, affecting offspring disease susceptibility in adulthood. In recent years, therapeutic use of the Type 2 diabetes drug metformin has expanded to the treatment of pre-diabetes, polycystic ovarian syndrome, and gestational diabetes. Because metformin both undergoes renal excretion and binds to receptors on the placenta, the fetus receives equivalent maternal dosing. Although no teratogenic nor short-term harmful fetal impact of metformin is known to occur, the effects of metformin exposure on longer-range offspring development have not yet been fully elucidated. This review encapsulates the (albeit limited) existing knowledge regarding the potential longer-term impact of intrauterine metformin exposure on the development of key organs including the liver, central nervous system, heart, gut, and endocrine pancreas in animal models and humans. We discuss molecular and cellular mechanisms that would be altered in response to treatment and describe the potential consequences of these developmental changes on postnatal health. Further studies regarding the influence of metformin exposure on fetal programming and adult metabolic health will provide necessary insight to its long-term risks, benefits, and limitations in order to guide decisions for use of metformin during pregnancy.</p>\",\"PeriodicalId\":75257,\"journal\":{\"name\":\"Trends in developmental biology\",\"volume\":\"14 \",\"pages\":\"1-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9802655/pdf/nihms-1858967.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in developmental biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in developmental biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developmental effects of in utero metformin exposure.
According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, the intrauterine environment influences fetal programming and development, affecting offspring disease susceptibility in adulthood. In recent years, therapeutic use of the Type 2 diabetes drug metformin has expanded to the treatment of pre-diabetes, polycystic ovarian syndrome, and gestational diabetes. Because metformin both undergoes renal excretion and binds to receptors on the placenta, the fetus receives equivalent maternal dosing. Although no teratogenic nor short-term harmful fetal impact of metformin is known to occur, the effects of metformin exposure on longer-range offspring development have not yet been fully elucidated. This review encapsulates the (albeit limited) existing knowledge regarding the potential longer-term impact of intrauterine metformin exposure on the development of key organs including the liver, central nervous system, heart, gut, and endocrine pancreas in animal models and humans. We discuss molecular and cellular mechanisms that would be altered in response to treatment and describe the potential consequences of these developmental changes on postnatal health. Further studies regarding the influence of metformin exposure on fetal programming and adult metabolic health will provide necessary insight to its long-term risks, benefits, and limitations in order to guide decisions for use of metformin during pregnancy.