{"title":"在褐鳟幼鱼中,代谢鳞片的下降与从细长到深的身体形状的个体发生变化相似。","authors":"Jorge-Rubén Sánchez-González, Alfredo G Nicieza","doi":"10.1093/cz/zoac042","DOIUrl":null,"url":null,"abstract":"<p><p>Body shape and metabolic rate can be important determinants of animal performance, yet often their effects on influential traits are evaluated in a non-integrated way. This creates an important gap because the integration between shape and metabolism may be crucial to evaluate metabolic scaling theories. Here, we measured standard metabolic rate in 1- and 2-years old juvenile brown trout <i>Salmo trutta</i>, and used a geometric morphometrics approach to extricate the effects of ontogeny and size on the link between shape and metabolic scaling. We evidenced near-isometric ontogenetic scaling of metabolic rate with size, but also a biphasic pattern driven by a significant change in metabolic scaling, from positive to negative allometry. Moreover, the change in metabolic allometry parallels an ontogenetic change from elongate to deep-bodied shapes. This is consistent with the dynamic energy budget (DEB) and surface area (SA) theories, but not with the resource transport network theory which predicts increasing allometric exponents for trends towards more robust, three-dimensional bodies. In addition, we found a relationship between body shape and size independent metabolic rate, with a positive correlation between robustness and metabolic rate, which fits well within the view of Pace-of-Life Syndromes (POLS). Finally, our results align with previous studies that question the universality of metabolic scaling exponents and propose other mechanistic models explaining the diversity of metabolic scaling relationships or emphasizing the potential contribution of ecological factors.</p>","PeriodicalId":50599,"journal":{"name":"Current Zoology","volume":"69 3","pages":"294-303"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e1/3e/zoac042.PMC10284058.pdf","citationCount":"4","resultStr":"{\"title\":\"Declining metabolic scaling parallels an ontogenetic change from elongate to deep-bodied shapes in juvenile Brown trout.\",\"authors\":\"Jorge-Rubén Sánchez-González, Alfredo G Nicieza\",\"doi\":\"10.1093/cz/zoac042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Body shape and metabolic rate can be important determinants of animal performance, yet often their effects on influential traits are evaluated in a non-integrated way. This creates an important gap because the integration between shape and metabolism may be crucial to evaluate metabolic scaling theories. Here, we measured standard metabolic rate in 1- and 2-years old juvenile brown trout <i>Salmo trutta</i>, and used a geometric morphometrics approach to extricate the effects of ontogeny and size on the link between shape and metabolic scaling. We evidenced near-isometric ontogenetic scaling of metabolic rate with size, but also a biphasic pattern driven by a significant change in metabolic scaling, from positive to negative allometry. Moreover, the change in metabolic allometry parallels an ontogenetic change from elongate to deep-bodied shapes. This is consistent with the dynamic energy budget (DEB) and surface area (SA) theories, but not with the resource transport network theory which predicts increasing allometric exponents for trends towards more robust, three-dimensional bodies. In addition, we found a relationship between body shape and size independent metabolic rate, with a positive correlation between robustness and metabolic rate, which fits well within the view of Pace-of-Life Syndromes (POLS). Finally, our results align with previous studies that question the universality of metabolic scaling exponents and propose other mechanistic models explaining the diversity of metabolic scaling relationships or emphasizing the potential contribution of ecological factors.</p>\",\"PeriodicalId\":50599,\"journal\":{\"name\":\"Current Zoology\",\"volume\":\"69 3\",\"pages\":\"294-303\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e1/3e/zoac042.PMC10284058.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/cz/zoac042\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/cz/zoac042","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Declining metabolic scaling parallels an ontogenetic change from elongate to deep-bodied shapes in juvenile Brown trout.
Body shape and metabolic rate can be important determinants of animal performance, yet often their effects on influential traits are evaluated in a non-integrated way. This creates an important gap because the integration between shape and metabolism may be crucial to evaluate metabolic scaling theories. Here, we measured standard metabolic rate in 1- and 2-years old juvenile brown trout Salmo trutta, and used a geometric morphometrics approach to extricate the effects of ontogeny and size on the link between shape and metabolic scaling. We evidenced near-isometric ontogenetic scaling of metabolic rate with size, but also a biphasic pattern driven by a significant change in metabolic scaling, from positive to negative allometry. Moreover, the change in metabolic allometry parallels an ontogenetic change from elongate to deep-bodied shapes. This is consistent with the dynamic energy budget (DEB) and surface area (SA) theories, but not with the resource transport network theory which predicts increasing allometric exponents for trends towards more robust, three-dimensional bodies. In addition, we found a relationship between body shape and size independent metabolic rate, with a positive correlation between robustness and metabolic rate, which fits well within the view of Pace-of-Life Syndromes (POLS). Finally, our results align with previous studies that question the universality of metabolic scaling exponents and propose other mechanistic models explaining the diversity of metabolic scaling relationships or emphasizing the potential contribution of ecological factors.
Current ZoologyAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
3.20
自引率
9.10%
发文量
111
审稿时长
6 weeks
期刊介绍:
About the Journal
Current Zoology (formerly Acta Zoologica Sinica, founded in 1935) is an open access, bimonthly, peer-reviewed international journal of zoology. It publishes review articles and research papers in the fields of ecology, evolution and behaviour.
Current Zoology is sponsored by Institute of Zoology, Chinese Academy of Sciences, along with the China Zoological Society.