阿尔茨海默病诊断中基于张量的多模态特征选择与回归。

Jun Yu, Zhaoming Kong, Liang Zhan, Li Shen, Lifang He
{"title":"阿尔茨海默病诊断中基于张量的多模态特征选择与回归。","authors":"Jun Yu, Zhaoming Kong, Liang Zhan, Li Shen, Lifang He","doi":"10.5121/csit.2022.121812","DOIUrl":null,"url":null,"abstract":"<p><p>The assessment of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) associated with brain changes remains a challenging task. Recent studies have demonstrated that combination of multi-modality imaging techniques can better reflect pathological characteristics and contribute to more accurate diagnosis of AD and MCI. In this paper, we propose a novel tensor-based multi-modality feature selection and regression method for diagnosis and biomarker identification of AD and MCI from normal controls. Specifically, we leverage the tensor structure to exploit high-level correlation information inherent in the multi-modality data, and investigate tensor-level sparsity in the multilinear regression model. We present the practical advantages of our method for the analysis of ADNI data using three imaging modalities (VBM-MRI, FDG-PET and AV45-PET) with clinical parameters of disease severity and cognitive scores. The experimental results demonstrate the superior performance of our proposed method against the state-of-the-art for the disease diagnosis and the identification of disease-specific regions and modality-related differences. The code for this work is publicly available at https://github.com/junfish/BIOS22.</p>","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":"12 18","pages":"123-134"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985071/pdf/nihms-1874354.pdf","citationCount":"0","resultStr":"{\"title\":\"Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis.\",\"authors\":\"Jun Yu, Zhaoming Kong, Liang Zhan, Li Shen, Lifang He\",\"doi\":\"10.5121/csit.2022.121812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The assessment of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) associated with brain changes remains a challenging task. Recent studies have demonstrated that combination of multi-modality imaging techniques can better reflect pathological characteristics and contribute to more accurate diagnosis of AD and MCI. In this paper, we propose a novel tensor-based multi-modality feature selection and regression method for diagnosis and biomarker identification of AD and MCI from normal controls. Specifically, we leverage the tensor structure to exploit high-level correlation information inherent in the multi-modality data, and investigate tensor-level sparsity in the multilinear regression model. We present the practical advantages of our method for the analysis of ADNI data using three imaging modalities (VBM-MRI, FDG-PET and AV45-PET) with clinical parameters of disease severity and cognitive scores. The experimental results demonstrate the superior performance of our proposed method against the state-of-the-art for the disease diagnosis and the identification of disease-specific regions and modality-related differences. The code for this work is publicly available at https://github.com/junfish/BIOS22.</p>\",\"PeriodicalId\":72673,\"journal\":{\"name\":\"Computer science & information technology\",\"volume\":\"12 18\",\"pages\":\"123-134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985071/pdf/nihms-1874354.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer science & information technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.121812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.121812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

评估与大脑变化相关的阿尔茨海默病(AD)和轻度认知障碍(MCI)仍然是一项具有挑战性的任务。最近的研究表明,多模式成像技术的结合可以更好地反映AD和MCI的病理特征,并有助于更准确的诊断。在本文中,我们提出了一种新的基于张量的多模态特征选择和回归方法,用于正常对照组AD和MCI的诊断和生物标志物识别。具体来说,我们利用张量结构来利用多模态数据中固有的高级相关性信息,并研究多线性回归模型中张量水平的稀疏性。我们介绍了使用三种成像模式(VBM-MRI、FDG-PET和AV45-PET)以及疾病严重程度和认知评分的临床参数分析ADNI数据的方法的实际优势。实验结果表明,与最先进的方法相比,我们提出的方法在疾病诊断、疾病特异性区域和模态相关差异的识别方面具有优越的性能。此作品的代码可在https://github.com/junfish/BIOS22.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis.

The assessment of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) associated with brain changes remains a challenging task. Recent studies have demonstrated that combination of multi-modality imaging techniques can better reflect pathological characteristics and contribute to more accurate diagnosis of AD and MCI. In this paper, we propose a novel tensor-based multi-modality feature selection and regression method for diagnosis and biomarker identification of AD and MCI from normal controls. Specifically, we leverage the tensor structure to exploit high-level correlation information inherent in the multi-modality data, and investigate tensor-level sparsity in the multilinear regression model. We present the practical advantages of our method for the analysis of ADNI data using three imaging modalities (VBM-MRI, FDG-PET and AV45-PET) with clinical parameters of disease severity and cognitive scores. The experimental results demonstrate the superior performance of our proposed method against the state-of-the-art for the disease diagnosis and the identification of disease-specific regions and modality-related differences. The code for this work is publicly available at https://github.com/junfish/BIOS22.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信