Nicholas R. Rydzewski MD, MPH , Kyle T. Helzer PhD , Matthew Bootsma MS , Yue Shi PhD , Hamza Bakhtiar BS , Martin Sjöström MD, PhD , Shuang G. Zhao MD, MSE
{"title":"机器学习与分子放射肿瘤生物标志物","authors":"Nicholas R. Rydzewski MD, MPH , Kyle T. Helzer PhD , Matthew Bootsma MS , Yue Shi PhD , Hamza Bakhtiar BS , Martin Sjöström MD, PhD , Shuang G. Zhao MD, MSE","doi":"10.1016/j.semradonc.2023.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Developing radiation tumor biomarkers that can guide personalized radiotherapy<span> clinical decision making is a critical goal in the effort towards precision cancer medicine. High-throughput molecular assays paired with modern computational techniques have the potential to identify individual tumor-specific signatures and create tools that can help understand heterogenous patient outcomes in response to radiotherapy, allowing clinicians to fully benefit from the technological advances in molecular profiling and computational biology including machine learning. However, the increasingly complex nature of the data generated from high-throughput and “omics” assays require careful selection of analytical strategies. Furthermore, the power of modern machine learning techniques to detect subtle data patterns comes with special considerations to ensure that the results are generalizable. Herein, we review the computational framework of tumor biomarker development and describe commonly used machine learning approaches and how they are applied for radiation biomarker development using molecular data, as well as challenges and emerging research trends.</span></p></div>","PeriodicalId":49542,"journal":{"name":"Seminars in Radiation Oncology","volume":"33 3","pages":"Pages 243-251"},"PeriodicalIF":2.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287033/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning & Molecular Radiation Tumor Biomarkers\",\"authors\":\"Nicholas R. Rydzewski MD, MPH , Kyle T. Helzer PhD , Matthew Bootsma MS , Yue Shi PhD , Hamza Bakhtiar BS , Martin Sjöström MD, PhD , Shuang G. Zhao MD, MSE\",\"doi\":\"10.1016/j.semradonc.2023.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing radiation tumor biomarkers that can guide personalized radiotherapy<span> clinical decision making is a critical goal in the effort towards precision cancer medicine. High-throughput molecular assays paired with modern computational techniques have the potential to identify individual tumor-specific signatures and create tools that can help understand heterogenous patient outcomes in response to radiotherapy, allowing clinicians to fully benefit from the technological advances in molecular profiling and computational biology including machine learning. However, the increasingly complex nature of the data generated from high-throughput and “omics” assays require careful selection of analytical strategies. Furthermore, the power of modern machine learning techniques to detect subtle data patterns comes with special considerations to ensure that the results are generalizable. Herein, we review the computational framework of tumor biomarker development and describe commonly used machine learning approaches and how they are applied for radiation biomarker development using molecular data, as well as challenges and emerging research trends.</span></p></div>\",\"PeriodicalId\":49542,\"journal\":{\"name\":\"Seminars in Radiation Oncology\",\"volume\":\"33 3\",\"pages\":\"Pages 243-251\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287033/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in Radiation Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053429623000164\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053429623000164","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Developing radiation tumor biomarkers that can guide personalized radiotherapy clinical decision making is a critical goal in the effort towards precision cancer medicine. High-throughput molecular assays paired with modern computational techniques have the potential to identify individual tumor-specific signatures and create tools that can help understand heterogenous patient outcomes in response to radiotherapy, allowing clinicians to fully benefit from the technological advances in molecular profiling and computational biology including machine learning. However, the increasingly complex nature of the data generated from high-throughput and “omics” assays require careful selection of analytical strategies. Furthermore, the power of modern machine learning techniques to detect subtle data patterns comes with special considerations to ensure that the results are generalizable. Herein, we review the computational framework of tumor biomarker development and describe commonly used machine learning approaches and how they are applied for radiation biomarker development using molecular data, as well as challenges and emerging research trends.
期刊介绍:
Each issue of Seminars in Radiation Oncology is compiled by a guest editor to address a specific topic in the specialty, presenting definitive information on areas of rapid change and development. A significant number of articles report new scientific information. Topics covered include tumor biology, diagnosis, medical and surgical management of the patient, and new technologies.