一种解释心理测量误差的真实分数计算方法。

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Maxwell Mansolf
{"title":"一种解释心理测量误差的真实分数计算方法。","authors":"Maxwell Mansolf","doi":"10.1037/met0000578","DOIUrl":null,"url":null,"abstract":"<p><p>Scores on self-report questionnaires are often used in statistical models without accounting for measurement error, leading to bias in estimates related to those variables. While measurement error corrections exist, their broad application is limited by their simplicity (e.g., Spearman's correction for attenuation), which complicates their inclusion in specialized analyses, or complexity (e.g., latent variable modeling), which necessitates large sample sizes and can limit the analytic options available. To address these limitations, a flexible multiple imputation-based approach, called <i>true score imputation</i>, is described, which can accommodate a broad class of statistical models. By augmenting copies of the original dataset with sets of plausible true scores, the resulting set of datasets can be analyzed using widely available multiple imputation methodology, yielding point estimates and confidence intervals calculated with respect to the estimated true score. A simulation study demonstrates that the method yields a large reduction in bias compared to treating scores as measured without error, and a real-world data example is further used to illustrate the benefit of the method. An R package implements the proposed method via a custom imputation function for an existing, commonly used multiple imputation library (mice), allowing true score imputation to be used alongside multiple imputation for missing data, yielding a unified framework for accounting for both missing data and measurement error. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674037/pdf/","citationCount":"0","resultStr":"{\"title\":\"A true score imputation method to account for psychometric measurement error.\",\"authors\":\"Maxwell Mansolf\",\"doi\":\"10.1037/met0000578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scores on self-report questionnaires are often used in statistical models without accounting for measurement error, leading to bias in estimates related to those variables. While measurement error corrections exist, their broad application is limited by their simplicity (e.g., Spearman's correction for attenuation), which complicates their inclusion in specialized analyses, or complexity (e.g., latent variable modeling), which necessitates large sample sizes and can limit the analytic options available. To address these limitations, a flexible multiple imputation-based approach, called <i>true score imputation</i>, is described, which can accommodate a broad class of statistical models. By augmenting copies of the original dataset with sets of plausible true scores, the resulting set of datasets can be analyzed using widely available multiple imputation methodology, yielding point estimates and confidence intervals calculated with respect to the estimated true score. A simulation study demonstrates that the method yields a large reduction in bias compared to treating scores as measured without error, and a real-world data example is further used to illustrate the benefit of the method. An R package implements the proposed method via a custom imputation function for an existing, commonly used multiple imputation library (mice), allowing true score imputation to be used alongside multiple imputation for missing data, yielding a unified framework for accounting for both missing data and measurement error. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674037/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000578\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000578","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自我报告问卷的得分通常用于统计模型,而不考虑测量误差,导致与这些变量相关的估计存在偏差。虽然存在测量误差修正,但它们的广泛应用受到其简单性(例如,Spearman衰减校正)的限制,这使得它们在专业分析中的包含变得复杂,或者复杂性(例如,潜在变量建模),这需要大样本量,并可能限制可用的分析选项。为了解决这些限制,本文描述了一种灵活的基于多重假设的方法,称为真实分数假设,它可以容纳广泛的统计模型。通过在原始数据集的副本上增加可信的真实分数,可以使用广泛使用的多重imputation方法来分析生成的数据集集,并根据估计的真实分数计算出点估计和置信区间。仿真研究表明,与将分数作为无误差的测量值相比,该方法大大减少了偏差,并进一步使用实际数据示例来说明该方法的优点。一个R包通过一个针对现有的、常用的多重输入库(mice)的自定义输入函数实现了所提出的方法,允许真实分数输入与对缺失数据的多重输入一起使用,从而产生一个统一的框架来计算缺失数据和测量误差。(PsycInfo数据库记录(c) 2023 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A true score imputation method to account for psychometric measurement error.

Scores on self-report questionnaires are often used in statistical models without accounting for measurement error, leading to bias in estimates related to those variables. While measurement error corrections exist, their broad application is limited by their simplicity (e.g., Spearman's correction for attenuation), which complicates their inclusion in specialized analyses, or complexity (e.g., latent variable modeling), which necessitates large sample sizes and can limit the analytic options available. To address these limitations, a flexible multiple imputation-based approach, called true score imputation, is described, which can accommodate a broad class of statistical models. By augmenting copies of the original dataset with sets of plausible true scores, the resulting set of datasets can be analyzed using widely available multiple imputation methodology, yielding point estimates and confidence intervals calculated with respect to the estimated true score. A simulation study demonstrates that the method yields a large reduction in bias compared to treating scores as measured without error, and a real-world data example is further used to illustrate the benefit of the method. An R package implements the proposed method via a custom imputation function for an existing, commonly used multiple imputation library (mice), allowing true score imputation to be used alongside multiple imputation for missing data, yielding a unified framework for accounting for both missing data and measurement error. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信