{"title":"利用冠状病毒的累积数据进行多变量时间序列短期预测。","authors":"Suryanshi Mishra, Tinku Singh, Manish Kumar, Satakshi","doi":"10.1007/s12530-023-09509-w","DOIUrl":null,"url":null,"abstract":"<p><p>Coronavirus emerged as a highly contagious, pathogenic virus that severely affects the respiratory system of humans. The epidemic-related data is collected regularly, which machine learning algorithms can employ to comprehend and estimate valuable information. The analysis of the gathered data through time series approaches may assist in developing more accurate forecasting models and strategies to combat the disease. This paper focuses on short-term forecasting of cumulative reported incidences and mortality. Forecasting is conducted utilizing state-of-the-art mathematical and deep learning models for multivariate time series forecasting, including extended susceptible-exposed-infected-recovered (SEIR), long-short-term memory (LSTM), and vector autoregression (VAR). The SEIR model has been extended by integrating additional information such as hospitalization, mortality, vaccination, and quarantine incidences. Extensive experiments have been conducted to compare deep learning and mathematical models that enable us to estimate fatalities and incidences more precisely based on mortality in the eight most affected nations during the time of this research. The metrics like mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) are employed to gauge the model's effectiveness. The deep learning model LSTM outperformed all others in terms of forecasting accuracy. Additionally, the study explores the impact of vaccination on reported epidemics and deaths worldwide. Furthermore, the detrimental effects of ambient temperature and relative humidity on pathogenic virus dissemination have been analyzed.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":" ","pages":"1-18"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239659/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multivariate time series short term forecasting using cumulative data of coronavirus.\",\"authors\":\"Suryanshi Mishra, Tinku Singh, Manish Kumar, Satakshi\",\"doi\":\"10.1007/s12530-023-09509-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronavirus emerged as a highly contagious, pathogenic virus that severely affects the respiratory system of humans. The epidemic-related data is collected regularly, which machine learning algorithms can employ to comprehend and estimate valuable information. The analysis of the gathered data through time series approaches may assist in developing more accurate forecasting models and strategies to combat the disease. This paper focuses on short-term forecasting of cumulative reported incidences and mortality. Forecasting is conducted utilizing state-of-the-art mathematical and deep learning models for multivariate time series forecasting, including extended susceptible-exposed-infected-recovered (SEIR), long-short-term memory (LSTM), and vector autoregression (VAR). The SEIR model has been extended by integrating additional information such as hospitalization, mortality, vaccination, and quarantine incidences. Extensive experiments have been conducted to compare deep learning and mathematical models that enable us to estimate fatalities and incidences more precisely based on mortality in the eight most affected nations during the time of this research. The metrics like mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) are employed to gauge the model's effectiveness. The deep learning model LSTM outperformed all others in terms of forecasting accuracy. Additionally, the study explores the impact of vaccination on reported epidemics and deaths worldwide. Furthermore, the detrimental effects of ambient temperature and relative humidity on pathogenic virus dissemination have been analyzed.</p>\",\"PeriodicalId\":12174,\"journal\":{\"name\":\"Evolving Systems\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolving Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12530-023-09509-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolving Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12530-023-09509-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multivariate time series short term forecasting using cumulative data of coronavirus.
Coronavirus emerged as a highly contagious, pathogenic virus that severely affects the respiratory system of humans. The epidemic-related data is collected regularly, which machine learning algorithms can employ to comprehend and estimate valuable information. The analysis of the gathered data through time series approaches may assist in developing more accurate forecasting models and strategies to combat the disease. This paper focuses on short-term forecasting of cumulative reported incidences and mortality. Forecasting is conducted utilizing state-of-the-art mathematical and deep learning models for multivariate time series forecasting, including extended susceptible-exposed-infected-recovered (SEIR), long-short-term memory (LSTM), and vector autoregression (VAR). The SEIR model has been extended by integrating additional information such as hospitalization, mortality, vaccination, and quarantine incidences. Extensive experiments have been conducted to compare deep learning and mathematical models that enable us to estimate fatalities and incidences more precisely based on mortality in the eight most affected nations during the time of this research. The metrics like mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) are employed to gauge the model's effectiveness. The deep learning model LSTM outperformed all others in terms of forecasting accuracy. Additionally, the study explores the impact of vaccination on reported epidemics and deaths worldwide. Furthermore, the detrimental effects of ambient temperature and relative humidity on pathogenic virus dissemination have been analyzed.
期刊介绍:
Evolving Systems covers surveys, methodological, and application-oriented papers in the area of dynamically evolving systems. ‘Evolving systems’ are inspired by the idea of system model evolution in a dynamically changing and evolving environment. In contrast to the standard approach in machine learning, mathematical modelling and related disciplines where the model structure is assumed and fixed a priori and the problem is focused on parametric optimisation, evolving systems allow the model structure to gradually change/evolve. The aim of such continuous or life-long learning and domain adaptation is self-organization. It can adapt to new data patterns, is more suitable for streaming data, transfer learning and can recognise and learn from unknown and unpredictable data patterns. Such properties are critically important for autonomous, robotic systems that continue to learn and adapt after they are being designed (at run time).
Evolving Systems solicits publications that address the problems of all aspects of system modelling, clustering, classification, prediction and control in non-stationary, unpredictable environments and describe new methods and approaches for their design.
The journal is devoted to the topic of self-developing, self-organised, and evolving systems in its entirety — from systematic methods to case studies and real industrial applications. It covers all aspects of the methodology such as
Evolving Systems methodology
Evolving Neural Networks and Neuro-fuzzy Systems
Evolving Classifiers and Clustering
Evolving Controllers and Predictive models
Evolving Explainable AI systems
Evolving Systems applications
but also looking at new paradigms and applications, including medicine, robotics, business, industrial automation, control systems, transportation, communications, environmental monitoring, biomedical systems, security, and electronic services, finance and economics. The common features for all submitted methods and systems are the evolving nature of the systems and the environments.
The journal is encompassing contributions related to:
1) Methods of machine learning, AI, computational intelligence and mathematical modelling
2) Inspiration from Nature and Biology, including Neuroscience, Bioinformatics and Molecular biology, Quantum physics
3) Applications in engineering, business, social sciences.