Morgan E. Gorris , Courtney D. Shelley , Sara Y. Del Valle , Carrie A. Manore
{"title":"基于广义倾向评分的美国新墨西哥州COVID-19时变脆弱性指数","authors":"Morgan E. Gorris , Courtney D. Shelley , Sara Y. Del Valle , Carrie A. Manore","doi":"10.1016/j.hpopen.2021.100052","DOIUrl":null,"url":null,"abstract":"<div><p>The coronavirus disease (COVID-19) pandemic has highlighted systemic inequities in the United States and resulted in a larger burden of negative social outcomes for marginalized communities. New Mexico, a state in the southwestern US, has a unique population with a large racial minority population and a high rate of poverty that may make communities more vulnerable to negative social outcomes from COVID-19. To identify which communities may be at the highest relative risk, we created a county-level vulnerability index. After the first COVID-19 case was reported in New Mexico on March 11, 2020, we fit a generalized propensity score model that incorporates sociodemographic factors to predict county-level viral exposure and thus, the generic risk to negative social outcomes such as unemployment or mental health impacts. We used four static sociodemographic covariates important for the state of New Mexico—population, poverty, household size, and minority population—and weekly cumulative case counts to iteratively run our model each week and normalize the exposure score to create a time-varying vulnerability index. We found the relative vulnerability between counties varied in the first eight weeks from the initial COVID-19 case before stabilizing. This framework for creating a location-specific vulnerability index in response to an ongoing disaster may be used as a quick, deployable metric to inform health policy decisions such as allocating state resources to the county level.</p></div>","PeriodicalId":34527,"journal":{"name":"Health Policy Open","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.hpopen.2021.100052","citationCount":"4","resultStr":"{\"title\":\"A time-varying vulnerability index for COVID-19 in New Mexico, USA using generalized propensity scores\",\"authors\":\"Morgan E. Gorris , Courtney D. Shelley , Sara Y. Del Valle , Carrie A. Manore\",\"doi\":\"10.1016/j.hpopen.2021.100052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The coronavirus disease (COVID-19) pandemic has highlighted systemic inequities in the United States and resulted in a larger burden of negative social outcomes for marginalized communities. New Mexico, a state in the southwestern US, has a unique population with a large racial minority population and a high rate of poverty that may make communities more vulnerable to negative social outcomes from COVID-19. To identify which communities may be at the highest relative risk, we created a county-level vulnerability index. After the first COVID-19 case was reported in New Mexico on March 11, 2020, we fit a generalized propensity score model that incorporates sociodemographic factors to predict county-level viral exposure and thus, the generic risk to negative social outcomes such as unemployment or mental health impacts. We used four static sociodemographic covariates important for the state of New Mexico—population, poverty, household size, and minority population—and weekly cumulative case counts to iteratively run our model each week and normalize the exposure score to create a time-varying vulnerability index. We found the relative vulnerability between counties varied in the first eight weeks from the initial COVID-19 case before stabilizing. This framework for creating a location-specific vulnerability index in response to an ongoing disaster may be used as a quick, deployable metric to inform health policy decisions such as allocating state resources to the county level.</p></div>\",\"PeriodicalId\":34527,\"journal\":{\"name\":\"Health Policy Open\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.hpopen.2021.100052\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Policy Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259022962100023X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Policy Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259022962100023X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
A time-varying vulnerability index for COVID-19 in New Mexico, USA using generalized propensity scores
The coronavirus disease (COVID-19) pandemic has highlighted systemic inequities in the United States and resulted in a larger burden of negative social outcomes for marginalized communities. New Mexico, a state in the southwestern US, has a unique population with a large racial minority population and a high rate of poverty that may make communities more vulnerable to negative social outcomes from COVID-19. To identify which communities may be at the highest relative risk, we created a county-level vulnerability index. After the first COVID-19 case was reported in New Mexico on March 11, 2020, we fit a generalized propensity score model that incorporates sociodemographic factors to predict county-level viral exposure and thus, the generic risk to negative social outcomes such as unemployment or mental health impacts. We used four static sociodemographic covariates important for the state of New Mexico—population, poverty, household size, and minority population—and weekly cumulative case counts to iteratively run our model each week and normalize the exposure score to create a time-varying vulnerability index. We found the relative vulnerability between counties varied in the first eight weeks from the initial COVID-19 case before stabilizing. This framework for creating a location-specific vulnerability index in response to an ongoing disaster may be used as a quick, deployable metric to inform health policy decisions such as allocating state resources to the county level.