{"title":"基于同源合成块和进化断点区域基因本体的鸟类染色体进化综合比较分析。","authors":"Jules Claeys, Michael N Romanov, Darren K Griffin","doi":"10.1007/s10709-023-00185-x","DOIUrl":null,"url":null,"abstract":"<p><p>Avian chromosomes undergo more intra- than interchromosomal rearrangements, which either induce or are associated with genome variations among birds. Evolving from a common ancestor with a karyotype not dissimilar from modern chicken, two evolutionary elements characterize evolutionary change: homologous synteny blocks (HSBs) constitute common conserved parts at the sequence level, while evolutionary breakpoint regions (EBRs) occur between HSBs, defining the points where rearrangement occurred. Understanding the link between the structural organization and functionality of HSBs and EBRs provides insight into the mechanistic basis of chromosomal change. Previously, we identified gene ontology (GO) terms associated with both; however, here we revisit our analyses in light of newly developed bioinformatic algorithms and the chicken genome assembly galGal6. We aligned genomes available for six birds and one lizard species, identifying 630 HSBs and 19 EBRs. We demonstrate that HSBs hold vast functionality expressed by GO terms that have been largely conserved through evolution. Particularly, we found that genes within microchromosomal HSBs had specific functionalities relevant to neurons, RNA, cellular transport and embryonic development, and other associations. Our findings suggest that microchromosomes may have conserved throughout evolution due to the specificity of GO terms within their HSBs. The detected EBRs included those found in the genome of the anole lizard, meaning they were shared by all saurian descendants, with others being unique to avian lineages. Our estimate of gene richness in HSBs supported the fact that microchromosomes contain twice as many genes as macrochromosomes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267005/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrative comparative analysis of avian chromosome evolution by in-silico mapping of the gene ontology of homologous synteny blocks and evolutionary breakpoint regions.\",\"authors\":\"Jules Claeys, Michael N Romanov, Darren K Griffin\",\"doi\":\"10.1007/s10709-023-00185-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Avian chromosomes undergo more intra- than interchromosomal rearrangements, which either induce or are associated with genome variations among birds. Evolving from a common ancestor with a karyotype not dissimilar from modern chicken, two evolutionary elements characterize evolutionary change: homologous synteny blocks (HSBs) constitute common conserved parts at the sequence level, while evolutionary breakpoint regions (EBRs) occur between HSBs, defining the points where rearrangement occurred. Understanding the link between the structural organization and functionality of HSBs and EBRs provides insight into the mechanistic basis of chromosomal change. Previously, we identified gene ontology (GO) terms associated with both; however, here we revisit our analyses in light of newly developed bioinformatic algorithms and the chicken genome assembly galGal6. We aligned genomes available for six birds and one lizard species, identifying 630 HSBs and 19 EBRs. We demonstrate that HSBs hold vast functionality expressed by GO terms that have been largely conserved through evolution. Particularly, we found that genes within microchromosomal HSBs had specific functionalities relevant to neurons, RNA, cellular transport and embryonic development, and other associations. Our findings suggest that microchromosomes may have conserved throughout evolution due to the specificity of GO terms within their HSBs. The detected EBRs included those found in the genome of the anole lizard, meaning they were shared by all saurian descendants, with others being unique to avian lineages. Our estimate of gene richness in HSBs supported the fact that microchromosomes contain twice as many genes as macrochromosomes.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10709-023-00185-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-023-00185-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrative comparative analysis of avian chromosome evolution by in-silico mapping of the gene ontology of homologous synteny blocks and evolutionary breakpoint regions.
Avian chromosomes undergo more intra- than interchromosomal rearrangements, which either induce or are associated with genome variations among birds. Evolving from a common ancestor with a karyotype not dissimilar from modern chicken, two evolutionary elements characterize evolutionary change: homologous synteny blocks (HSBs) constitute common conserved parts at the sequence level, while evolutionary breakpoint regions (EBRs) occur between HSBs, defining the points where rearrangement occurred. Understanding the link between the structural organization and functionality of HSBs and EBRs provides insight into the mechanistic basis of chromosomal change. Previously, we identified gene ontology (GO) terms associated with both; however, here we revisit our analyses in light of newly developed bioinformatic algorithms and the chicken genome assembly galGal6. We aligned genomes available for six birds and one lizard species, identifying 630 HSBs and 19 EBRs. We demonstrate that HSBs hold vast functionality expressed by GO terms that have been largely conserved through evolution. Particularly, we found that genes within microchromosomal HSBs had specific functionalities relevant to neurons, RNA, cellular transport and embryonic development, and other associations. Our findings suggest that microchromosomes may have conserved throughout evolution due to the specificity of GO terms within their HSBs. The detected EBRs included those found in the genome of the anole lizard, meaning they were shared by all saurian descendants, with others being unique to avian lineages. Our estimate of gene richness in HSBs supported the fact that microchromosomes contain twice as many genes as macrochromosomes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.