{"title":"基于滑动模糊粒度和均衡优化器的短期负荷预测系统。","authors":"Shoujiang Li, Jianzhou Wang, Hui Zhang, Yong Liang","doi":"10.1007/s10489-023-04599-0","DOIUrl":null,"url":null,"abstract":"<div><p>Short-term electricity load forecasting is critical and challenging for scheduling operations and production planning in modern power management systems due to stochastic characteristics of electricity load data. Current forecasting models mainly focus on adapting to various load data to improve the accuracy of the forecasting. However, these models ignore the noise and nonstationarity of the load data, resulting in forecasting uncertainty. To address this issue, a short-term load forecasting system is proposed by combining a modified information processing technique, an advanced meta-heuristics algorithm and deep neural networks. The information processing technique utilizes a sliding fuzzy granulation method to remove noise and obtain uncertainty information from load data. Deep neural networks can capture the nonlinear characteristics of load data to obtain forecasting performance gains due to the powerful mapping capability. A novel meta-heuristics algorithm is used to optimize the weighting coefficients to reduce the contingency and improve the stability of the forecasting. Both point forecasting and interval forecasting are utilized for comprehensive forecasting evaluation of future electricity load. Several experiments demonstrate the superiority, effectiveness and stability of the proposed system by comprehensively considering multiple evaluation metrics.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"53 19","pages":"21606 - 21640"},"PeriodicalIF":3.4000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-023-04599-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Short-term load forecasting system based on sliding fuzzy granulation and equilibrium optimizer\",\"authors\":\"Shoujiang Li, Jianzhou Wang, Hui Zhang, Yong Liang\",\"doi\":\"10.1007/s10489-023-04599-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Short-term electricity load forecasting is critical and challenging for scheduling operations and production planning in modern power management systems due to stochastic characteristics of electricity load data. Current forecasting models mainly focus on adapting to various load data to improve the accuracy of the forecasting. However, these models ignore the noise and nonstationarity of the load data, resulting in forecasting uncertainty. To address this issue, a short-term load forecasting system is proposed by combining a modified information processing technique, an advanced meta-heuristics algorithm and deep neural networks. The information processing technique utilizes a sliding fuzzy granulation method to remove noise and obtain uncertainty information from load data. Deep neural networks can capture the nonlinear characteristics of load data to obtain forecasting performance gains due to the powerful mapping capability. A novel meta-heuristics algorithm is used to optimize the weighting coefficients to reduce the contingency and improve the stability of the forecasting. Both point forecasting and interval forecasting are utilized for comprehensive forecasting evaluation of future electricity load. Several experiments demonstrate the superiority, effectiveness and stability of the proposed system by comprehensively considering multiple evaluation metrics.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"53 19\",\"pages\":\"21606 - 21640\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10489-023-04599-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-023-04599-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-023-04599-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Short-term load forecasting system based on sliding fuzzy granulation and equilibrium optimizer
Short-term electricity load forecasting is critical and challenging for scheduling operations and production planning in modern power management systems due to stochastic characteristics of electricity load data. Current forecasting models mainly focus on adapting to various load data to improve the accuracy of the forecasting. However, these models ignore the noise and nonstationarity of the load data, resulting in forecasting uncertainty. To address this issue, a short-term load forecasting system is proposed by combining a modified information processing technique, an advanced meta-heuristics algorithm and deep neural networks. The information processing technique utilizes a sliding fuzzy granulation method to remove noise and obtain uncertainty information from load data. Deep neural networks can capture the nonlinear characteristics of load data to obtain forecasting performance gains due to the powerful mapping capability. A novel meta-heuristics algorithm is used to optimize the weighting coefficients to reduce the contingency and improve the stability of the forecasting. Both point forecasting and interval forecasting are utilized for comprehensive forecasting evaluation of future electricity load. Several experiments demonstrate the superiority, effectiveness and stability of the proposed system by comprehensively considering multiple evaluation metrics.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.