Shariful A Syed, Ashley M Schnakenberg Martin, Jose A Cortes-Briones, Patrick D Skosnik
{"title":"大麻素和神经振荡之间的关系:大麻如何扰乱感觉,知觉和认知。","authors":"Shariful A Syed, Ashley M Schnakenberg Martin, Jose A Cortes-Briones, Patrick D Skosnik","doi":"10.1177/15500594221138280","DOIUrl":null,"url":null,"abstract":"<p><p>Disruptions in neural oscillations are believed to be one critical mechanism by which cannabinoids, such as delta-9-tetrahyrdrocannabinol (THC; the primary psychoactive constituent of cannabis), perturbs brain function. Here we briefly review the role of synchronized neural activity, particularly in the gamma (30-80 Hz) and theta (4-7 Hz) frequency range, in sensation, perception, and cognition. This is followed by a review of clinical studies utilizing electroencephalography (EEG) which have demonstrated that both chronic and acute cannabinoid exposure disrupts neural oscillations in humans. We also offer a hypothetical framework through which endocannabinoids modulate neural synchrony at the network level. This also includes speculation on how both chronic and acute cannabinoids disrupt functionally relevant neural oscillations by altering the fine tuning of oscillations and the inhibitory/excitatory balance of neural circuits. Finally, we highlight important clinical implications of such oscillatory disruptions, such as the potential relationship between cannabis use, altered neural synchrony, and disruptions in sensation, perception, and cognition, which are perturbed in disorders such as schizophrenia.</p>","PeriodicalId":10682,"journal":{"name":"Clinical EEG and Neuroscience","volume":"54 4","pages":"359-369"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Relationship Between Cannabinoids and Neural Oscillations: How Cannabis Disrupts Sensation, Perception, and Cognition.\",\"authors\":\"Shariful A Syed, Ashley M Schnakenberg Martin, Jose A Cortes-Briones, Patrick D Skosnik\",\"doi\":\"10.1177/15500594221138280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Disruptions in neural oscillations are believed to be one critical mechanism by which cannabinoids, such as delta-9-tetrahyrdrocannabinol (THC; the primary psychoactive constituent of cannabis), perturbs brain function. Here we briefly review the role of synchronized neural activity, particularly in the gamma (30-80 Hz) and theta (4-7 Hz) frequency range, in sensation, perception, and cognition. This is followed by a review of clinical studies utilizing electroencephalography (EEG) which have demonstrated that both chronic and acute cannabinoid exposure disrupts neural oscillations in humans. We also offer a hypothetical framework through which endocannabinoids modulate neural synchrony at the network level. This also includes speculation on how both chronic and acute cannabinoids disrupt functionally relevant neural oscillations by altering the fine tuning of oscillations and the inhibitory/excitatory balance of neural circuits. Finally, we highlight important clinical implications of such oscillatory disruptions, such as the potential relationship between cannabis use, altered neural synchrony, and disruptions in sensation, perception, and cognition, which are perturbed in disorders such as schizophrenia.</p>\",\"PeriodicalId\":10682,\"journal\":{\"name\":\"Clinical EEG and Neuroscience\",\"volume\":\"54 4\",\"pages\":\"359-369\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594221138280\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15500594221138280","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The Relationship Between Cannabinoids and Neural Oscillations: How Cannabis Disrupts Sensation, Perception, and Cognition.
Disruptions in neural oscillations are believed to be one critical mechanism by which cannabinoids, such as delta-9-tetrahyrdrocannabinol (THC; the primary psychoactive constituent of cannabis), perturbs brain function. Here we briefly review the role of synchronized neural activity, particularly in the gamma (30-80 Hz) and theta (4-7 Hz) frequency range, in sensation, perception, and cognition. This is followed by a review of clinical studies utilizing electroencephalography (EEG) which have demonstrated that both chronic and acute cannabinoid exposure disrupts neural oscillations in humans. We also offer a hypothetical framework through which endocannabinoids modulate neural synchrony at the network level. This also includes speculation on how both chronic and acute cannabinoids disrupt functionally relevant neural oscillations by altering the fine tuning of oscillations and the inhibitory/excitatory balance of neural circuits. Finally, we highlight important clinical implications of such oscillatory disruptions, such as the potential relationship between cannabis use, altered neural synchrony, and disruptions in sensation, perception, and cognition, which are perturbed in disorders such as schizophrenia.
期刊介绍:
Clinical EEG and Neuroscience conveys clinically relevant research and development in electroencephalography and neuroscience. Original articles on any aspect of clinical neurophysiology or related work in allied fields are invited for publication.