DETEXA:通过SQL进行声明性可扩展文本探索和分析。

IF 1.6 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE
Yannis Foufoulas, Eleni Zacharia, Harry Dimitropoulos, Natalia Manola, Yannis Ioannidis
{"title":"DETEXA:通过SQL进行声明性可扩展文本探索和分析。","authors":"Yannis Foufoulas, Eleni Zacharia, Harry Dimitropoulos, Natalia Manola, Yannis Ioannidis","doi":"10.1007/s00799-023-00358-1","DOIUrl":null,"url":null,"abstract":"<p><p>Metadata enrichment through text mining techniques is becoming one of the most significant tasks in digital libraries. Due to the exponential increase of open access publications, several new challenges have emerged. Raw data are usually big, unstructured, and come from heterogeneous data sources. In this paper, we introduce a text analysis framework implemented in extended SQL that exploits the scalability characteristics of modern database management systems. The purpose of this framework is to provide the opportunity to build performant end-to-end text mining pipelines which include data harvesting, cleaning, processing, and text analysis at once. SQL is selected due to its declarative nature which offers fast experimentation and the ability to build APIs so that domain experts can edit text mining workflows via easy-to-use graphical interfaces. Our experimental analysis demonstrates that the proposed framework is very effective and achieves significant speedup, up to three times faster, in common use cases compared to other popular approaches.</p>","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170051/pdf/","citationCount":"0","resultStr":"{\"title\":\"DETEXA: declarative extensible text exploration and analysis through SQL.\",\"authors\":\"Yannis Foufoulas, Eleni Zacharia, Harry Dimitropoulos, Natalia Manola, Yannis Ioannidis\",\"doi\":\"10.1007/s00799-023-00358-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metadata enrichment through text mining techniques is becoming one of the most significant tasks in digital libraries. Due to the exponential increase of open access publications, several new challenges have emerged. Raw data are usually big, unstructured, and come from heterogeneous data sources. In this paper, we introduce a text analysis framework implemented in extended SQL that exploits the scalability characteristics of modern database management systems. The purpose of this framework is to provide the opportunity to build performant end-to-end text mining pipelines which include data harvesting, cleaning, processing, and text analysis at once. SQL is selected due to its declarative nature which offers fast experimentation and the ability to build APIs so that domain experts can edit text mining workflows via easy-to-use graphical interfaces. Our experimental analysis demonstrates that the proposed framework is very effective and achieves significant speedup, up to three times faster, in common use cases compared to other popular approaches.</p>\",\"PeriodicalId\":44974,\"journal\":{\"name\":\"International Journal on Digital Libraries\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170051/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00799-023-00358-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00799-023-00358-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

通过文本挖掘技术丰富元数据正成为数字图书馆中最重要的任务之一。由于开放获取出版物呈指数级增长,出现了一些新的挑战。原始数据通常是大的、非结构化的,并且来自异构数据源。在本文中,我们介绍了一个在扩展SQL中实现的文本分析框架,该框架利用了现代数据库管理系统的可扩展性特征。该框架的目的是提供构建高性能端到端文本挖掘管道的机会,该管道包括数据采集、清理、处理和文本分析。SQL之所以被选中,是因为它的声明性提供了快速实验和构建API的能力,使领域专家可以通过易于使用的图形界面编辑文本挖掘工作流。我们的实验分析表明,与其他流行方法相比,在常见用例中,所提出的框架非常有效,并实现了显著的加速,速度高达三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DETEXA: declarative extensible text exploration and analysis through SQL.

DETEXA: declarative extensible text exploration and analysis through SQL.

Metadata enrichment through text mining techniques is becoming one of the most significant tasks in digital libraries. Due to the exponential increase of open access publications, several new challenges have emerged. Raw data are usually big, unstructured, and come from heterogeneous data sources. In this paper, we introduce a text analysis framework implemented in extended SQL that exploits the scalability characteristics of modern database management systems. The purpose of this framework is to provide the opportunity to build performant end-to-end text mining pipelines which include data harvesting, cleaning, processing, and text analysis at once. SQL is selected due to its declarative nature which offers fast experimentation and the ability to build APIs so that domain experts can edit text mining workflows via easy-to-use graphical interfaces. Our experimental analysis demonstrates that the proposed framework is very effective and achieves significant speedup, up to three times faster, in common use cases compared to other popular approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
6.70%
发文量
20
期刊介绍: The International Journal on Digital Libraries (IJDL) examines the theory and practice of acquisition definition organization management preservation and dissemination of digital information via global networking. It covers all aspects of digital libraries (DLs) from large-scale heterogeneous data and information management & access to linking and connectivity to security privacy and policies to its application use and evaluation.The scope of IJDL includes but is not limited to: The FAIR principle and the digital libraries infrastructure Findable: Information access and retrieval; semantic search; data and information exploration; information navigation; smart indexing and searching; resource discovery Accessible: visualization and digital collections; user interfaces; interfaces for handicapped users; HCI and UX in DLs; Security and privacy in DLs; multimodal access Interoperable: metadata (definition management curation integration); syntactic and semantic interoperability; linked data Reusable: reproducibility; Open Science; sustainability profitability repeatability of research results; confidentiality and privacy issues in DLs Digital Library Architectures including heterogeneous and dynamic data management; data and repositories Acquisition of digital information: authoring environments for digital objects; digitization of traditional content Digital Archiving and Preservation Digital Preservation and curation Digital archiving Web Archiving Archiving and preservation Strategies AI for Digital Libraries Machine Learning for DLs Data Mining in DLs NLP for DLs Applications of Digital Libraries Digital Humanities Open Data and their reuse Scholarly DLs (incl. bibliometrics altmetrics) Epigraphy and Paleography Digital Museums Future trends in Digital Libraries Definition of DLs in a ubiquitous digital library world Datafication of digital collections Interaction and user experience (UX) in DLs Information visualization Collection understanding Privacy and security Multimodal user interfaces Accessibility (or "Access for users with disabilities") UX studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信