{"title":"交配种群动态与死亡迁移模式","authors":"Emil F. Frølich","doi":"10.1016/j.tpb.2023.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>The diel vertical migration is one of the main drivers of population dynamics in the ocean. Population dynamical models of the ocean typically do not incorporate the behavioral aspects of the migration. We demonstrate a model with coupled population dynamics and behavior with the diel vertical migration emerging. We study the population dynamics and behavioral dynamics of a predator–prey system. We impose a cost of motion for both consumers and prey, and model each individual as following an Itô stochastic differential equation. We study the fixed-points of the ecosystem. Our modeling shows that as we increase the basal resource load, the strength of the diel vertical migration increases, as well as maximal velocity. In addition, a bimodal pattern emerges both for predators and consumers. The increase in the magnitude of the diel vertical migration causes a change in the allocation of copepod resources.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"151 ","pages":"Pages 19-27"},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Copuling population dynamics and diel migration patterns\",\"authors\":\"Emil F. Frølich\",\"doi\":\"10.1016/j.tpb.2023.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The diel vertical migration is one of the main drivers of population dynamics in the ocean. Population dynamical models of the ocean typically do not incorporate the behavioral aspects of the migration. We demonstrate a model with coupled population dynamics and behavior with the diel vertical migration emerging. We study the population dynamics and behavioral dynamics of a predator–prey system. We impose a cost of motion for both consumers and prey, and model each individual as following an Itô stochastic differential equation. We study the fixed-points of the ecosystem. Our modeling shows that as we increase the basal resource load, the strength of the diel vertical migration increases, as well as maximal velocity. In addition, a bimodal pattern emerges both for predators and consumers. The increase in the magnitude of the diel vertical migration causes a change in the allocation of copepod resources.</p></div>\",\"PeriodicalId\":49437,\"journal\":{\"name\":\"Theoretical Population Biology\",\"volume\":\"151 \",\"pages\":\"Pages 19-27\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Population Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040580923000217\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Population Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580923000217","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Copuling population dynamics and diel migration patterns
The diel vertical migration is one of the main drivers of population dynamics in the ocean. Population dynamical models of the ocean typically do not incorporate the behavioral aspects of the migration. We demonstrate a model with coupled population dynamics and behavior with the diel vertical migration emerging. We study the population dynamics and behavioral dynamics of a predator–prey system. We impose a cost of motion for both consumers and prey, and model each individual as following an Itô stochastic differential equation. We study the fixed-points of the ecosystem. Our modeling shows that as we increase the basal resource load, the strength of the diel vertical migration increases, as well as maximal velocity. In addition, a bimodal pattern emerges both for predators and consumers. The increase in the magnitude of the diel vertical migration causes a change in the allocation of copepod resources.
期刊介绍:
An interdisciplinary journal, Theoretical Population Biology presents articles on theoretical aspects of the biology of populations, particularly in the areas of demography, ecology, epidemiology, evolution, and genetics. Emphasis is on the development of mathematical theory and models that enhance the understanding of biological phenomena.
Articles highlight the motivation and significance of the work for advancing progress in biology, relying on a substantial mathematical effort to obtain biological insight. The journal also presents empirical results and computational and statistical methods directly impinging on theoretical problems in population biology.