Misato Ogasahara, Alexander R Cobb, Rahayu Sukmaria Sukri, Faizah Metali, Koichi Kamiya
{"title":"汶莱达鲁萨兰国泥炭沼泽森林树种雪梨的遗传结构和种群历史。","authors":"Misato Ogasahara, Alexander R Cobb, Rahayu Sukmaria Sukri, Faizah Metali, Koichi Kamiya","doi":"10.1266/ggs.22-00112","DOIUrl":null,"url":null,"abstract":"<p><p>Southeast Asia supports high biodiversity, in a mosaic of forest types formed by the expansion and contraction of habitats through past climate changes. Among the region's forest types, the geographical distribution of peat swamp forests has fluctuated intensely over the past 120,000 years. Most peat swamp forests in Southeast Asia are found in coastal regions and formed within the last 7,000 years after a decline in sea level. However, some peat swamps were initiated earlier on substrates of slightly higher elevation, and these peat swamps might have been refugia for peat swamp species in the last glacial period and the high sea level period. We assessed genetic diversity, genetic structure and divergence time of current genetic groups for Shorea albida in Brunei, an endemic tree species of Bornean peat swamp forests, using 18 microsatellite markers. Genetic diversity was not lower than has been found in other Shorea species, possibly because of the high density of S. albida in Brunei. Although overall genetic divergence between populations was low, two populations (Ingei and Labi Road 3) were distinct from the other populations. Analysis using DIYABC estimated that three genetic groups (Ingei, Labi Road 3 and others) diverged simultaneously from their ancestral population, whose effective size was very small, about 7,500 years ago, corresponding to a recent sea level peak in the Belait-Baram river basin. In that high sea level period, some higher-elevation lands remained, and peat formation had already started in this region. We propose that the current genetic structure of S. albida in Brunei was formed from small refugial populations that survived the period of higher sea level in these higher-elevation areas. Because of their relatively high genetic diversity, Brunei's S. albida populations should become an important genetic resource for the recovery of genetically healthy populations in other parts of northwest Borneo.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":"98 1","pages":"35-44"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genetic structure and population history of a peat swamp forest tree species, Shorea albida (Dipterocarpaceae), in Brunei Darussalam.\",\"authors\":\"Misato Ogasahara, Alexander R Cobb, Rahayu Sukmaria Sukri, Faizah Metali, Koichi Kamiya\",\"doi\":\"10.1266/ggs.22-00112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Southeast Asia supports high biodiversity, in a mosaic of forest types formed by the expansion and contraction of habitats through past climate changes. Among the region's forest types, the geographical distribution of peat swamp forests has fluctuated intensely over the past 120,000 years. Most peat swamp forests in Southeast Asia are found in coastal regions and formed within the last 7,000 years after a decline in sea level. However, some peat swamps were initiated earlier on substrates of slightly higher elevation, and these peat swamps might have been refugia for peat swamp species in the last glacial period and the high sea level period. We assessed genetic diversity, genetic structure and divergence time of current genetic groups for Shorea albida in Brunei, an endemic tree species of Bornean peat swamp forests, using 18 microsatellite markers. Genetic diversity was not lower than has been found in other Shorea species, possibly because of the high density of S. albida in Brunei. Although overall genetic divergence between populations was low, two populations (Ingei and Labi Road 3) were distinct from the other populations. Analysis using DIYABC estimated that three genetic groups (Ingei, Labi Road 3 and others) diverged simultaneously from their ancestral population, whose effective size was very small, about 7,500 years ago, corresponding to a recent sea level peak in the Belait-Baram river basin. In that high sea level period, some higher-elevation lands remained, and peat formation had already started in this region. We propose that the current genetic structure of S. albida in Brunei was formed from small refugial populations that survived the period of higher sea level in these higher-elevation areas. Because of their relatively high genetic diversity, Brunei's S. albida populations should become an important genetic resource for the recovery of genetically healthy populations in other parts of northwest Borneo.</p>\",\"PeriodicalId\":12690,\"journal\":{\"name\":\"Genes & genetic systems\",\"volume\":\"98 1\",\"pages\":\"35-44\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genetic systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1266/ggs.22-00112\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genetic systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1266/ggs.22-00112","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
摘要
在过去的气候变化中,栖息地的扩张和收缩形成了森林类型的马赛克,东南亚拥有高度的生物多样性。在该地区的森林类型中,泥炭沼泽森林的地理分布在过去12万年中波动剧烈。东南亚的大多数泥炭沼泽森林位于沿海地区,形成于海平面下降后的近7000年。在末次冰期和高海平面期,泥炭沼泽可能是泥炭沼泽物种的避难所。利用18个微卫星标记,对婆罗洲泥炭沼泽森林特有树种文莱杉树(Shorea albida)现有遗传群的遗传多样性、遗传结构和分化时间进行了评价。其遗传多样性不低于其他Shorea种,可能是由于文莱的S. albida密度高。尽管居群间总体遗传分化程度较低,但两个居群(Ingei和Labi Road 3)与其他居群存在显著差异。使用DIYABC进行的分析估计,大约7500年前,三个遗传群体(Ingei, Labi Road 3和其他)同时从他们的祖先群体中分化出来,他们的有效规模非常小,对应于最近Belait-Baram河流域的海平面峰值。在那个海平面高的时期,一些海拔较高的陆地仍然存在,在这个地区已经开始形成泥炭。我们认为,目前文莱的紫檀的遗传结构是由这些高海拔地区在高海平面时期幸存下来的小型避难种群形成的。由于其相对较高的遗传多样性,文莱的海蛾种群应成为婆罗洲西北部其他地区遗传健康种群恢复的重要遗传资源。
Genetic structure and population history of a peat swamp forest tree species, Shorea albida (Dipterocarpaceae), in Brunei Darussalam.
Southeast Asia supports high biodiversity, in a mosaic of forest types formed by the expansion and contraction of habitats through past climate changes. Among the region's forest types, the geographical distribution of peat swamp forests has fluctuated intensely over the past 120,000 years. Most peat swamp forests in Southeast Asia are found in coastal regions and formed within the last 7,000 years after a decline in sea level. However, some peat swamps were initiated earlier on substrates of slightly higher elevation, and these peat swamps might have been refugia for peat swamp species in the last glacial period and the high sea level period. We assessed genetic diversity, genetic structure and divergence time of current genetic groups for Shorea albida in Brunei, an endemic tree species of Bornean peat swamp forests, using 18 microsatellite markers. Genetic diversity was not lower than has been found in other Shorea species, possibly because of the high density of S. albida in Brunei. Although overall genetic divergence between populations was low, two populations (Ingei and Labi Road 3) were distinct from the other populations. Analysis using DIYABC estimated that three genetic groups (Ingei, Labi Road 3 and others) diverged simultaneously from their ancestral population, whose effective size was very small, about 7,500 years ago, corresponding to a recent sea level peak in the Belait-Baram river basin. In that high sea level period, some higher-elevation lands remained, and peat formation had already started in this region. We propose that the current genetic structure of S. albida in Brunei was formed from small refugial populations that survived the period of higher sea level in these higher-elevation areas. Because of their relatively high genetic diversity, Brunei's S. albida populations should become an important genetic resource for the recovery of genetically healthy populations in other parts of northwest Borneo.