{"title":"基于迁移学习的多支持向量机模型在血管内超声(IVUS)图像中的钙化检测。","authors":"Priyanka Arora, Parminder Singh, Akshay Girdhar, Rajesh Vijayvergiya","doi":"10.1177/01617346231164574","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease serves as the leading cause of death worldwide. Calcification detection is considered an important factor in cardiovascular diseases. Currently, medical practitioners visually inspect the presence of calcification using intravascular ultrasound (IVUS) images. The study aims to detect the extent of calcification as belonging to class I, II as mild calcification, and class III, IV as dense calcification from IVUS images acquired at 40 MHz. To detect calcification, the features were extracted using improved AlexNet architecture and then were fed into machine learning classifiers. The experiments were carried out using 14 real IVUS pullbacks of 10 patients. Experimental results show that the combination of traditional machine learning with deep learning approaches significantly improves accuracy. The results show that support vector machines outperform all other classifiers. The proposed model is compared with two other pre-trained models GoogLeNet (98.8%), SqueezeNet (99.2%), and exhibits considerable improvement in classification accuracy (99.8%). In the future other models such as Vision Transformers could be explored with additional feature selection methods such as ReliefF, PSO, ACO, etc. to improve the overall accuracy of diagnosis.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcification Detection in Intravascular Ultrasound (IVUS) Images Using Transfer Learning Based MultiSVM model.\",\"authors\":\"Priyanka Arora, Parminder Singh, Akshay Girdhar, Rajesh Vijayvergiya\",\"doi\":\"10.1177/01617346231164574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular disease serves as the leading cause of death worldwide. Calcification detection is considered an important factor in cardiovascular diseases. Currently, medical practitioners visually inspect the presence of calcification using intravascular ultrasound (IVUS) images. The study aims to detect the extent of calcification as belonging to class I, II as mild calcification, and class III, IV as dense calcification from IVUS images acquired at 40 MHz. To detect calcification, the features were extracted using improved AlexNet architecture and then were fed into machine learning classifiers. The experiments were carried out using 14 real IVUS pullbacks of 10 patients. Experimental results show that the combination of traditional machine learning with deep learning approaches significantly improves accuracy. The results show that support vector machines outperform all other classifiers. The proposed model is compared with two other pre-trained models GoogLeNet (98.8%), SqueezeNet (99.2%), and exhibits considerable improvement in classification accuracy (99.8%). In the future other models such as Vision Transformers could be explored with additional feature selection methods such as ReliefF, PSO, ACO, etc. to improve the overall accuracy of diagnosis.</p>\",\"PeriodicalId\":49401,\"journal\":{\"name\":\"Ultrasonic Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonic Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01617346231164574\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01617346231164574","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Calcification Detection in Intravascular Ultrasound (IVUS) Images Using Transfer Learning Based MultiSVM model.
Cardiovascular disease serves as the leading cause of death worldwide. Calcification detection is considered an important factor in cardiovascular diseases. Currently, medical practitioners visually inspect the presence of calcification using intravascular ultrasound (IVUS) images. The study aims to detect the extent of calcification as belonging to class I, II as mild calcification, and class III, IV as dense calcification from IVUS images acquired at 40 MHz. To detect calcification, the features were extracted using improved AlexNet architecture and then were fed into machine learning classifiers. The experiments were carried out using 14 real IVUS pullbacks of 10 patients. Experimental results show that the combination of traditional machine learning with deep learning approaches significantly improves accuracy. The results show that support vector machines outperform all other classifiers. The proposed model is compared with two other pre-trained models GoogLeNet (98.8%), SqueezeNet (99.2%), and exhibits considerable improvement in classification accuracy (99.8%). In the future other models such as Vision Transformers could be explored with additional feature selection methods such as ReliefF, PSO, ACO, etc. to improve the overall accuracy of diagnosis.
期刊介绍:
Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging