Niklas F C Hummel, Andy Zhou, Baohua Li, Kasey Markel, Izaiah J Ornelas, Patrick M Shih
{"title":"植物基因网络的跨调控格局。","authors":"Niklas F C Hummel, Andy Zhou, Baohua Li, Kasey Markel, Izaiah J Ornelas, Patrick M Shih","doi":"10.1016/j.cels.2023.05.002","DOIUrl":null,"url":null,"abstract":"<p><p>The transcriptional effector domains of transcription factors play a key role in controlling gene expression; however, their functional nature is poorly understood, hampering our ability to explore this fundamental dimension of gene regulatory networks. To map the trans-regulatory landscape in a complex eukaryote, we systematically characterized the putative transcriptional effector domains of over 400 Arabidopsis thaliana transcription factors for their capacity to modulate transcription. We demonstrate that transcriptional effector activity can be integrated into gene regulatory networks capable of elucidating the functional dynamics underlying gene expression patterns. We further show how our characterized domains can enhance genome engineering efforts and reveal how plant transcriptional activators share regulatory features conserved across distantly related eukaryotes. Our results provide a framework to systematically characterize the regulatory role of transcription factors at a genome-scale in order to understand the transcriptional wiring of biological systems.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 6","pages":"501-511.e4"},"PeriodicalIF":9.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The trans-regulatory landscape of gene networks in plants.\",\"authors\":\"Niklas F C Hummel, Andy Zhou, Baohua Li, Kasey Markel, Izaiah J Ornelas, Patrick M Shih\",\"doi\":\"10.1016/j.cels.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The transcriptional effector domains of transcription factors play a key role in controlling gene expression; however, their functional nature is poorly understood, hampering our ability to explore this fundamental dimension of gene regulatory networks. To map the trans-regulatory landscape in a complex eukaryote, we systematically characterized the putative transcriptional effector domains of over 400 Arabidopsis thaliana transcription factors for their capacity to modulate transcription. We demonstrate that transcriptional effector activity can be integrated into gene regulatory networks capable of elucidating the functional dynamics underlying gene expression patterns. We further show how our characterized domains can enhance genome engineering efforts and reveal how plant transcriptional activators share regulatory features conserved across distantly related eukaryotes. Our results provide a framework to systematically characterize the regulatory role of transcription factors at a genome-scale in order to understand the transcriptional wiring of biological systems.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":\"14 6\",\"pages\":\"501-511.e4\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2023.05.002\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.05.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The trans-regulatory landscape of gene networks in plants.
The transcriptional effector domains of transcription factors play a key role in controlling gene expression; however, their functional nature is poorly understood, hampering our ability to explore this fundamental dimension of gene regulatory networks. To map the trans-regulatory landscape in a complex eukaryote, we systematically characterized the putative transcriptional effector domains of over 400 Arabidopsis thaliana transcription factors for their capacity to modulate transcription. We demonstrate that transcriptional effector activity can be integrated into gene regulatory networks capable of elucidating the functional dynamics underlying gene expression patterns. We further show how our characterized domains can enhance genome engineering efforts and reveal how plant transcriptional activators share regulatory features conserved across distantly related eukaryotes. Our results provide a framework to systematically characterize the regulatory role of transcription factors at a genome-scale in order to understand the transcriptional wiring of biological systems.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.