{"title":"横膈肌在健康和疾病中的适应","authors":"Matthew J. Fogarty, Gary C. Sieck","doi":"10.1016/j.ddmod.2019.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Breathing is achieved without thought despite being controlled by a complex neural network. The diaphragm is the predominant muscle responsible for force/pressure generation during breathing, but it is also involved in other non-ventilatory expulsive behaviors. This review considers alterations in diaphragm muscle fiber types and the neural control of the diaphragm across our lifespan and in various disease conditions.</p></div>","PeriodicalId":39774,"journal":{"name":"Drug Discovery Today: Disease Models","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddmod.2019.10.002","citationCount":"8","resultStr":"{\"title\":\"Diaphragm muscle adaptations in health and disease\",\"authors\":\"Matthew J. Fogarty, Gary C. Sieck\",\"doi\":\"10.1016/j.ddmod.2019.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Breathing is achieved without thought despite being controlled by a complex neural network. The diaphragm is the predominant muscle responsible for force/pressure generation during breathing, but it is also involved in other non-ventilatory expulsive behaviors. This review considers alterations in diaphragm muscle fiber types and the neural control of the diaphragm across our lifespan and in various disease conditions.</p></div>\",\"PeriodicalId\":39774,\"journal\":{\"name\":\"Drug Discovery Today: Disease Models\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddmod.2019.10.002\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Disease Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S174067571830032X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Disease Models","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S174067571830032X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Diaphragm muscle adaptations in health and disease
Breathing is achieved without thought despite being controlled by a complex neural network. The diaphragm is the predominant muscle responsible for force/pressure generation during breathing, but it is also involved in other non-ventilatory expulsive behaviors. This review considers alterations in diaphragm muscle fiber types and the neural control of the diaphragm across our lifespan and in various disease conditions.
期刊介绍:
Drug Discovery Today: Disease Models discusses the non-human experimental models through which inference is drawn regarding the molecular aetiology and pathogenesis of human disease. It provides critical analysis and evaluation of which models can genuinely inform the research community about the direct process of human disease, those which may have value in basic toxicology, and those which are simply designed for effective expression and raw characterisation.